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Abstract. The question of how to represent and process uncertainty is
of fundamental importance to the scientific process, but also in everyday
life. Currently there exist a lot of different calculi for managing uncer-
tainty, each having its own advantages and disadvantages. Especially,
almost all are defining the domain and structure of uncertainty values a
priori, e.g., one real number, two real numbers, a finite domain, and so
on, but maybe uncertainty is best measured by complex numbers, ma-
trices or still another mathematical structure. Here we investigate the
notion of uncertainty from a foundational point of view, provide an on-
tology and axiomatic core system for uncertainty, derive and not define
the structure of uncertainty, and review the historical development of
approaches to uncertainty which have led to the results presented here.

1 Introduction

The quest for a theory of inductive logic, i.e., a logic defining the relationship
between observations and hypotheses, lies at the heart of the scientific process.
Accordingly, there is a plethora of research aiming at the clarification of this
relationship (probability theory as Bayesian theory [Jay03], possibility theory
[Dub06], Dempster-Shafer theory [Sha76], revision theory [Gär92], ranking the-
ory [Spo09], non-monotonic logic [Gin87], ...). The application of probability
theory to the problem of inductive logic is known as Bayesian inference. Despite
its intuitive appeal and many successful applications, it was never considered as a
solution to the problem of induction because of technical and philosophical prob-
lems. In fact, the 20th century witnessed a strong rejection of probability theory
as a theory for induction. Probability theory was developed to describe the ran-
domness of observable events, not the plausibility of unobservable hypotheses.
The randomness of events can be seen as an objective property of a physical sys-
tem, whereas the plausibility of hypotheses is intrinsically subjective, depending
on the knowledge of an “observer”. A first attempt to directly axiomatize the
intuition of reasoning under uncertainty was made by Richard T. Cox in 1946
[Cox46], but despite its important role as a starting point for a new branch of
mathematical, subjective uncertainty theory, Cox’s axiom system has drawbacks
which have prevented it from becoming a generally accepted axiomatization of



uncertainty measures, most notably its assumption that uncertainty values must
be measured by real numbers. Addressing this issue, it is an important goal
to define alternative axiom systems with a reduced number of controversial as-
sumptions and investigate their implications. One important contribution to this
endeavor is the axiom system by S. Arnborg and G. Sjödin [AS01], which has
inspired the axiom system introduced in this article.

2 An Ontology of Uncertainty

In the realm of empirical knowledge, uncertainty is unavoidable. A piece of in-
formation is in general not known to be true or false, but must be annotated
by shades of certainty. But what exactly is the structure of these “shades of
certainty”? Are there ontologically different types of uncertainty, and, after all,
how to assess, process and communicate uncertainty? One early distinction of
types of uncertainty was introduced by Frank Knight in his seminal book ”Risk,
Uncertainty, and Profit” [Kni21] on page 19:

“Uncertainty must be taken in a sense radically distinct from the familiar notion
of risk, from which it has never been properly separated.... The essential fact is
that ’risk’ means in some cases a quantity susceptible of measurement, while at
other times it is something distinctly not of this character; and there are far-
reaching and crucial differences in the bearings of the phenomena depending on
which of the two is really present and operating.... It will appear that a mea-
surable uncertainty, or ’risk’ proper, as we shall use the term, is so far different
from an unmeasurable one that it is not in effect an uncertainty at all.”

In today’s language one would describe “risk” as the uncertainty about the
occurrence of events within a fully specified stochastic model. The “Knightian
Uncertainty” is the uncertainty with regard to the correct model, what is today
sometimes called model risk, especially in financial mathematics.

In the next paragraph we introduce an ontology of uncertainty, and, even more
general, an ontology of indefiniteness, accompanied by a suitable terminology.

2.1 Indefiniteness

The advance of research in artificial intelligence, knowledge representation and
expert systems has led to a plethora of new approaches to represent and process
information: for example possibility theory, certainty factors, and non-monotonic
logics. This has led to confusion about the exact differences and commonalities
between the different calculi, and where they are competing approaches and
where they are complementary. One striking example is fuzzy logic, which is still
regarded as an alternative calculus for processing uncertain information, where
in fact it is a generalization of the notion of an event. This is clearly stated by



Judea Pearl in [Pea00]: “Fuzzyness is orthogonal to probability theory - it focuses
on the ambiguities in describing events, rather than the uncertainty about the
occurrence or non-occurrence of events.” Classical events are called crisp, in order
to express that they are definitely defined: in a specific situation the event has
occurred or not – there are no “degrees of occurrence”. The standard approach
to represent a set of crisp events is a Boolean algebra. In this sense, one can say
that a crisp event is an element of a Boolean algebra.

We suggest the notion “indefiniteness” for describing all sorts of non-certain,
non-crisp information. This leads to the following ontology of indefiniteness:

  

INDEFINITENESS

UNCERTAINTY FUZZYNESS

Event Uncertainty

Model Uncertainty

Severe Uncertainty

Fig. 1. Ontology of Indefiniteness
.

2.2 Types of Uncertainty

Here we propose three types of uncertainty, extending the Knightian ontology:

1. Event Uncertainty (quantitatively known unknowns)
2. Model Uncertainty (qualitatively known unknowns)
3. Severe Uncertainty (unknown unknowns)

We want to illustrate these three types of uncertainty – and their principal
differences – with an example taken from Bernoulli processes:



Event Uncertainty: Consider the coin model with p = 1
2 . The question what

will be the next outcome of an observation can be answered by a definite prob-
ability. In this case the probability is 1

2 , meaning that we are maximally unsure
what will happen next, even under a specific, complete stochastic model, but
other questions can be answered with more certainty by the coin model. For ex-
ample, the probability that we will observe 450 to 550 heads out of 1000 tosses
of the coin is greater than 0.998. So, for this specific question the coin model
delivers an answer with near certainty.

Model Uncertainty: Here we assume that the observations are generated by a
Bernoulli process, but with unknown success probability p. Without introducing
a prior distribution for the model parameter, this implies that we only can infer
probability intervals for events, for example the probability that we will observe
between 45 and 55 successes out of 100 experiments is in the interval [0, .71],
regardless of the value of p.

Severe Uncertainty: This is the “black swan” case, the possibility, that the
true model is not even approximately in the set of considered models. An example
would be that the true process is a deterministic switch between successes and
failures, leading to a probability of 1 for the above example.

The case of severe uncertainty leads to the question of how to describe all pos-
sible models. If one requires that a model has to be an algorithmic object, the
answer to this question is the set of all programs, also called program space.
R. Solomonoff pioneered learning in program space in the 1960s, employing a
Bayesian framework for describing model uncertainty and a prior distribution on
programs inspired by Occam’s razor [Sol64a,Sol64b]. Unfortunately, despite the
fact that all models have to be represented by programs, the learning process de-
vised by Solomonoff for the whole program space is not computable. The question
of how to essentially retain the generality of Solomonoff’s approach, but render
the learning process computable has spawned a research area of its own, which
is today called universal induction or algorithmic probability [Hut05,Sch09].

3 Formalizing Uncertainty

First we have to discuss a subtle issue of terminology. Above we have used the
notion “uncertainty values” to denote generalized truth values. Unfortunately,
there is the following problem when using this term in a formalized context:
no uncertainty about a proposition can be identified with sure knowledge, but
maximal uncertainty about a proposition is not certainty with regard to the
negation of the proposition. The domains of truth values we want to axiomatize
contain a greatest and a least element, where the greatest element should rep-
resent certainty and the least element impossibility, i.e. certainty of the negated



proposition. For this reason, we adopt the notion “confidence measure” instead
of uncertainty measure in the following definitions and axioms.

3.1 The Algebra of Truth Bearers

Before delving into the structure of uncertainty, we have to define the objects
and their relations which are capable to take on truth values, the truth bearers. In
a context of crisp events, i.e., after the fact it is unambiguously decidable if the
event has occurred or not, the algebra of truth bearers is normally considered to
be a Boolean algebra, but when truth bearers are not crisp, then another algebra
has to be used, i.e., a fuzzy algebra where the law of the excluded middle is not
valid: x ∨ ¬x 6= 1.

However, for the purpose of the present article we focus on Boolean algebras
as the structure of propositions. The investigation of uncertainty measures for
non-Boolean proposition algebras is open to future research.

3.2 Uncertainty: the Boolean Case

A conditional confidence measure for a Boolean Algebra U and a domain of
confidence values C is a mapping Γ : U × U \ {⊥} → C. Let A,B ∈ U, then
the expression Γ (A|B) reads: “the confidence value of A given B (wrt. Γ )”. The
domain of confidence values is partially ordered and has a greatest (>>) and a
least (⊥⊥) element. A confidence space is a triple (U, Γ, C). One of the follow-
ing axioms (Extensibility) for confidence measures deals with relations between
confidence spaces defined over different Boolean algebras. Thus it is necessary to
introduce a set of confidence spaces all sharing the same domain of confidence
values. Such a set of confidence spaces we will call a confidence universe, and
the following axiom system is concerned with such confidence universes, and not
single confidence spaces. This seemingly technical shift in perspective is essential
for the formalization of natural properties like extensibility, which plays a crucial
role as an intuitive axiom complementing Cox’s assumptions (see section 5).

We now state seven axioms, which can be grouped in three “connective axioms”
and four “infrastructure axioms”, where the connective axioms concern prop-
erties of the logical connectives and the infrastructure axioms deal with basic
properties of the order relations, the combinability of confidence spaces and a
closure property.

3.3 The Core of Uncertainty

In the following, we use Γ (A) as an abbreviation for Γ (A|>).



(Not) For all (U1, Γ1, C) and (U2, Γ2, C):

If Γ1(A1) = Γ2(A2), then Γ1(Ā1) = Γ2(Ā2).

The axiom Not expresses that the information in the confidence value of a
statement A is sufficient to determine the confidence value of Ā. This is justified
by the requirement that every piece of information which is relevant for the
confidence value of A is relevant for the confidence value of Ā and vice versa.

(And1) For all (U1, Γ1, C) and (U2, Γ2, C):

If Γ1(A1|B1) = Γ2(A2|B2) and Γ1(B1) = Γ2(B2),

then Γ1(A1B1) = Γ2(A2B2).

The axiom And1 states that the information in the confidence values of the
partial propositions determine the confidence value of the conjunction. Otherwise
the confidence value of the conjunction would contain information which is not
reflected in the partial propositions, although this information would be clearly
relevant for at least one of them.

(And2) For all (U1, Γ1, C) and (U2, Γ2, C):

If Γ1(A1B1) = Γ2(A2B2) and Γ1(B1) = Γ2(B2) 6= ⊥⊥,

then Γ1(A1|B1) = Γ2(A2|B2).

The axiom And2 ensures that all the information contained in a conditional
confidence value Γ (A|B) will be preserved in the confidence value of the con-
junction Γ (AB) when combined with the confidence Γ (B) (unless Γ (B) = ⊥⊥,
in which case the value of Γ (A|B) is irrelevant). Otherwise relevant information
about the partial propositions would not be contained in the confidence value of
the conjunction.

(Order1) For all (U, Γ, C) and all A,B ∈ U: If A ≤ B, then Γ (A) ≤ Γ (B).

(Order2) For all confidence values v, w ∈ C with v ≤ w there is a confidence
space (U, Γ, C) with A,B ∈ U and A ≤ B, Γ (A) = v, Γ (B) = w.

These two axioms connect the natural ordering of the Boolean algebra (A ≤ B iff
A∧B = A) with the ordering on the confidence domain, where Order1 specifies
the forward direction and Order2 specifies the backward direction.

(Extensibility) For all (U1, Γ1, C) and (U2, Γ2, C) there is a confidence space
(U3, Γ3, C), so that U3

∼= U1 ⊗U2, and for all A1, B1 ∈ U1, A2, B2 ∈ U2:
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Fig. 2. Ordered confidence values v and w with corresponding propositions in a suitably
chosen confidence space (U, Γ, C)
.

Γ3(A1 ⊗>2 |B1 ⊗B2) = Γ1(A1|B1) and Γ3(>1 ⊗A2 |B1 ⊗B2) = Γ2(A2|B2).

This axiom requires the extensibility of domains of discourse, i.e., two indepen-
dently defined confidence spaces shall be embeddable into one frame of reference.

(Background) For all (U, Γ1, C) and all C ∈ U there is a confidence space
(U, Γ2, C), so that for all A,B ∈ U:

Γ1(A|BC) = Γ2(A|B).

This closedness under conditioning assures that for every conditional confidence
measure Γ1 which is specialized by conditioning on some “background knowl-
edge” C, there is a conditional confidence measure Γ2 yielding the same valua-
tions without explicitly mentioning C.

For the justification of the axioms it is important to interpret the expression
Γ (A|B) as: “all that can be said about the confidence of A given B (wrt. Γ ).”
Given this interpretation, the common justification of the connective axioms is
that a violation of these axioms will necessarily lead to a loss of relevant in-
formation. Note that the axioms use only equations and inequalities between
confidence values, because there are no algebraic operations defined on the do-
main of confidence values yet.

In order to designate this and similar axiom systems, we propose a nomenclature
based on the connnective axioms. Extensionality of negation, conjunction, and



disjunction is denoted as axiom N, C1, and D1, respectively. The reconstructibil-
ity of the confidence value of an argument of a conjunction or a disjunction, given
the compositional confidence value and the confidence value of the other argu-
ment, is denoted as axiom C2 and D2, respectively. Using this terminology, the
above introduced axiom system can be referenced as NC12.

4 The Structure of Uncertainty

A first important implication of the NC12 axioms is stated in the following
theorem.

SFG Theorem: There exist functions S : C → C, F : C2 → C and
G : {(x, y) ∈ C2|x ≤ S(y)} → C with:

Γ (Ā) = S(Γ (A)), (1)

Γ (A ∧B) = F (Γ (A|B), Γ (B)), (2)

Γ (A ∨B) = G(Γ (A), Γ (B)), if AB = ⊥ (3)

Proof: First we prove a lemma stating that for every pair of confidence values
there is a confidence measure and two independent propositions such that the
confidence measure assigns the given confidence values to these propositions.

Independence Lemma: For all v, w ∈ C there is a confidence space (U, Γ, C)
with A,B ∈ U, such that:

Γ (A|B) = Γ (A) = v and Γ (B|A) = Γ (B) = w.

Proof: According to Order2, there are confidence spaces (U1, Γ1C), (U2, Γ2, C)
and propositions A ∈ U1 and B ∈ U2 with Γ1(A) = v and Γ2(B) = w.
Then axiom Extensibility guarantees the existence of a confidence space (U1⊗
U2, Γ3, C) with:

Γ3(A|B) = Γ1(A) = v and Γ3(B|A) = Γ2(B) = w.

ut

Next we show that axioms Not and And1 imply the existence of the functions
S and F .

Let v ∈ C be a confidence value, so that there is a confidence space (U1, Γ1, C)
and A1 ∈ U1 with Γ1(A1) = v. Then define:



S(v) = Γ1(Ā1)

This function is well-defined, because whenever there is another confidence space
(U2, Γ2, C) having v as value of the confidence measure Γ2, say Γ2(A2|B2) = v,
then axiom Not assures that Γ2(Ā2|B2) = Γ1(Ā1). That is, the value of S
does not depend on the specific choice of confidence space having v as a value.
Additionally, S is a total function by axiom Order2, which enforces that for
every v ∈ C there is at least one confidence space taking v as a value.

The analog will be proved for conjunction by introducing a binary function F .
Note that a proposition B and a conditional proposition A|B are related by F .

According to the independence lemma, for all v, w ∈ C there is a confidence space
(U1, Γ1) with Γ1(A1|B1) = Γ1(A1) = v and Γ1(B1) = w. Define F as follows:

F (v, w) = Γ1(A1B1)

The well-definedness is implied by axiom And1, the value of F (v, w) does not
depend on the confidence space and events having v and w as confidence values.
The totality of F is assured by the independence lemma, too, which is valid for
all v, w ∈ C.

Lemma: F is associative.

Proof: Let x, y, z ∈ C and (U, Γ, C) a confidence space with A,B,C ∈ U and
Γ (A|BC) = Γ (A) = x, Γ (B|C) = Γ (B) = y and Γ (C) = z. Such a confidence
space always exists according to the independence lemma. Then it follows:

F (F (x, y), z) = F (F (Γ (A), Γ (B)), Γ (C)) = F (F (Γ (A|BC), Γ (B|C)), Γ (C)) =

= F (Γ (AB|C), Γ (C)) = Γ (ABC) = F (Γ (A|BC), Γ (BC)) =

= F (Γ (A), F (Γ (B|C), Γ (C))) = F (Γ (A), F (Γ (B), Γ (C))) = F (x, F (y, z)).

ut

In the same way, by using the independence lemma to construct the appropriate
confidence spaces, one can show that F is commutative and has >> as a neutral
element. Next we derive the cancellation property for F on C+ = C \ {⊥⊥}.

Lemma: F is cancellative on C+, i.e., F (x, z) = F (y, z) implies x = y.

Proof: Let x, y, z ∈ C+ and (U, Γ, C) be a confidence space with A,B,C,D ∈ U
and Γ (A|C) = Γ (A) = x, Γ (B|D) = Γ (B) = y, and Γ (C) = Γ (D) = z, again
using the independence lemma to show the existence of such a confidence space.
Then we have F (x, z) = Γ (AC) and F (y, z) = Γ (BD). Thus, F (x, z) = F (y, z)
implies Γ (AC) = Γ (BD). Invoking And2 (without worrying about the case
z = ⊥⊥, because we are talking about C+), we get Γ (A|C) = Γ (B|D), i.e., x = y.

ut



The next step is the extension of the monoid (C+, F ) to a group. This can be done
analogously to the classical algebraic construction of Z from N, a construction
which works for all cancellative commutative monoids.

Using S, F , and F−1, the partial function G on {(x, y) ∈ C2|x ≤ S(y) is defined
as follows:

G(x, y) = S(F (S(F (x, F−1(S(y)))), S(y))), if y 6= >>

G(⊥⊥,>>) = >>, else

In order to illustrate this definition, we note that G can be seen as a solution of
the problem to represent addition with the functions x∗y, 1−x, and 1/x. Using
these functions, G translates into:

1− (1− x
1−y )(1− y)

which reduces to addition.

First we have to show that this is a well-defined function. For this, we have to
establish that on the domain of G the expression F (x, F−1(S(y))) is in C, because
the S-function is still only defined on C, and not on the group extension.

Lemma: ∀x, y ∈ C, y 6= >> : x ≤ S(y) ⇒ F (x, F−1(S(y))) ∈ C.

Proof: With Order2 and x ≤ S(y) it follows that there is a confidence space
(U, Γ, C) with A,B ∈ U, A ≤ B, Γ (A) = x, and Γ (B) = S(y). Now, because
of A ≤ B, it holds that Γ (AB) = Γ (A) = x. Let Γ (A|B) = z, which is uniqely
determined according to And2. z satisfies the equation x = F (z, S(y)), which is
equivalent to z = F (x, F−1(S(y))). Because z is, by definition, in the range of a
confidence measure, we have z ∈ C and hence F (x, F−1(S(y)) ∈ C.

ut

Having the well-definedness of G established, it is easy to show that G has the
desired property. Let Γ (B) 6= >> and AB = ⊥:

Γ (A ∨B) = S(Γ (Ā ∧ B̄)) = S(F (S(Γ (A|B̄)), S(Γ (B))))) =

= S(F (S(F (Γ (A ∧ B̄), F−1(S(Γ (B))))), S(Γ (B))))

Now A∧ B̄ is equal to A, because we assumed AB = ⊥. Hence G has the stated
property for Γ (B) 6= >>. In the case of Γ (B) = >>, we invoke Order1 to show
that Γ (A ∨ B) = >>, too. Furthermore, because AB = ⊥ implies A ≤ B̄, we
have, again by Order1, Γ (A) ≤ Γ (B̄) = S(Γ (B)) = ⊥⊥. Hence Γ (A) = ⊥⊥, and
we can apply the second part of the definition of G, which yields Γ (A ∨ B) =
G(Γ (A), Γ (B)) = G(⊥⊥,>>) = >>. This finishes the proof of the SFG theorem.

ut

Arnborg and Sjödin proved in [AS01] a theorem clarifying the algebraic structure
of C resulting from their axioms: it is the [0, 1]-interval of a totally ordered field.



Analyzing their proof, we find that the construction of a field from a ring will
fail if one does not assume a total order on C. In lemma 13 of [AS01] they state
that the ring they have constructed is a totally ordered integral domain, i.e.
a ring without zero divisors. Then they use a theorem from S. MacLane and
G. Birkhoff in [MB67] which states that every totally ordered integral domain
can be embedded in a totally ordered field. But this will not work in the case
of partial order because without the total order assumption one cannot prove
that the constructed ring will not contain zero divisors. So, lemma 13 of [AS01]
cannot be transferred to the partial order case, which blocks the application of
the MacLane-Birkhoff theorem. This is an interesting example of the interplay
between order properties and algebraic properties: a total order assumption has
strong algebraic implications, while partial order has not. Accordingly, order
properties and algebraic properties cannot, as one might have hoped, treated
separately. Based on these observations we formulate the following conjecture:

Ring Conjecture: The domain of confidence values C of a confidence universe
satisfying the axiom system NC12 can be embedded in a partially ordered ring
(Ĉ, 0, 1,⊕,�,≤). Let ·̂ : C → Ĉ be the embedding map, then the following holds:

⊥̂⊥ = 0, >̂> = 1, ∀v, w ∈ C : v ≤ w ⇔ v̂ ≤ ŵ .

Furthermore, all confidence measures Γ of the confidence universe satisfy:

Γ̂ (>) = 1 (4)

Γ̂ (A ∨B) = Γ̂ (A)⊕ Γ̂ (B), if AB = ⊥ (5)

Γ̂ (A ∧B) = Γ̂ (A|B) � Γ̂ (B) (6)

We state this as a conjecture, because a full proof is beyond the scope of this arti-
cle. A proof outline can be found in [Zim10], which documents work in progress.
If it can be confirmed, it will yield an algebraic characterization of uncertainty
based on NC12:

Uncertainty can be represented by elements of the [0, 1]-interval of partially or-
dered rings.

Furthermore, with regard to the ring operations, the uncertainty measures satisfy
the same axioms as probability measures satisfy with regard to the real numbers.
But in contrast to the real numbers, a ring may be only partially ordered or may
contain infinitesimal elements, like the hyperreal numbers (see section 6).

5 The Lineage of NC12

Our approach of axiomatizing uncertainty measures extends a line of thinking
started by R. T. Cox in 1946. In [Cox46], based on axioms which should hold for



all uncertainty measures, Cox derived a theorem stating that uncertainty mea-
sures are essentially probability measures, although his axioms are very different
from the axioms of probability theory. A recent exposition of his result can be
found in [Jay03].

The approach used by Cox was one of the first attempts to justify the use of prob-
abilities as a representation of uncertainty by directly axiomatizing the intuition
on uncertainty measures and then deriving that uncertainty measures have the
same mathematical structure as probability measures. This was a surprising re-
sult, given the fact that Cox’s axioms look totally different from the Kolmogorov
axioms of probability theory. But despite its new and far reaching conclusions,
Cox’s theorem was not widely acknowledged. This can be attributed to at least
two factors: first, it became clear that Cox’s derivation of his theorem was not
complete. The assumptions he made were not sufficient to reach the conclusion
in its full generality. This was noted by several authors, and J. Halpern showed
in detail where Cox’s proof failed by constructing a counterexample in [Hal99].
It was not before 1994 that J.B. Paris completed Cox’s proof by introducing a
new axiom [Par94]. This axiom closes the loopholes in Cox’s proof, but is very
technical in nature. Thus it is not acceptable as an axiom which should hold for
all reasonable uncertainty measures. This leads to the second factor contribut-
ing to the slow adoption of Cox’s result: there is at least one axiom which is
too strong to be considered as a general property of uncertainty measures, yet
is inherently necessary for the proof approach adopted by Cox. This axiom is
the assumption that uncertainty can be measured by one real number. This is
a strong structural assumption, implying that the uncertainty values are totally
ordered. This prevents, for example, the applicability of Cox’s theorem to calculi
like Dempster-Shafer theory, which uses two real numbers for the representation
of uncertainty.

The remaining question after the result of J. B. Paris is the following: are there
extensions or modifications of the Cox axioms, which are justifiable as general
properties of uncertainty measures and which imply a result essentially similar
to Cox’s theorem? One important step in this direction was taken by S. Arnborg
and G. Sjödin. They replaced the axiom introduced by J.B. Paris by a more
intuitive statement which they called “Refinability axiom”. Furthermore, they
dropped the requirement that uncertainty values are real numbers. By this step,
they transformed the Cox approach to a genuine algebraic approach, construct-
ing the structure of the domain of uncertainty values and not assuming it. But
in order to get the result they want, they introduced a total of 16 axioms (when
one counts every discernible requirement they formulate as a separate axiom,
as we do for our core system), with different degrees of foundational justifiabil-
ity. Additionally, at a crucial step in their proof they introduce a total order
assumption for the domain of uncertainty values, thus restricting the range of
their result in a fundamental way.

This was the situation where we entered the development, seeing that Arnborg
and Sjödin made a crucial step in the amelioration of the original Cox’s ap-



proach, but still leaving some major issues open, which have blocked the general
applicability of their result. Accordingly, our goal was the following: to devise
an axiom system as minimal as possible, with as weak and as general properties
as possible, especially to drop the total order assumption, but still be able to
derive a Cox-style result.

6 Relations to existing Uncertainty Calculi

Today, there exist many approaches for dealing with uncertainty, for example
lower probabilities, which have only partially ordered uncertainty values or non-
monotonic logic, which can be interpreted as using infinitesimal probabilities. In
the following, we try to analyse these calculi in the light of our results.

6.1 Lower Probabilities

The problem of dealing with “imprecise” probabilities has led to the develop-
ment of calculi known under the common name “lower probabilities”. The main
distinction from the probability calculus is that the uncertainty of a proposition
is judged by two numbers instead of one. Accordingly, there are two functions
mapping the elements of a proposition algebra to [0, 1], the lower probability P∗
and the upper probability P ∗. The most general notion of a lower probability is
defined wrt. a set of probability distributions P (see, for example, [Hal03]):

P ∗(A) = sup
P∈P

P (A) and P∗(A) = inf
P∈P

P (A).

One can show that lower and upper probabilities satisfy the following inequalities
if A and B are disjoint:

P∗(A ∪B) ≥ P∗(A) + P∗(B) and P ∗(A ∪B) ≤ P ∗(A) + P ∗(B).

These properties are called super-additivity and sub-additivity, respectively. Fur-
thermore, lower and upper probability are connected via the following relations:

P∗(A) ≤ P ∗(A) and P ∗(A) = 1− P∗(Ā).

The inequality says that lower and upper probabilities can be seen as defining
an interval, thus making lower and upper probabilities an uncertainty calculus
having a partially ordered domain of uncertainty values. The equation implies
that from both uncertainty values, upper and lower probability, of a proposition
one can derive the upper and lower probabilities of its negation. Hence lower
and upper probabilities together satisfy axiom Not.



An application of our results to the analysis of lower probabilities is now the
following: even if the domain of uncertainty values is only partially ordered,
which is possible according to NC12, there exists a function G which relates the
uncertainty value of a disjunction of disjoint propositions and the uncertainty
values of the single propositions by an equation, and not only by an inequality. If
no such function G exists for an uncertainty calculus, it must violate at least one
of the axioms Not, And1, or And2 (we assume that the infrastructure axioms are
satisfied). Now, because lower probabilities satisfy axiom Not, they must violate
And1 or And2. This implies that there cannot be any definition of conditioning
for lower probabilities which satisfies And1 and And2. Seeing And1 and And2 as
essential conditions for not loosing relevant information, this may explain why
the definiton of conditioning for lower probabilities has turned out to be such a
hard problem, which is still the topic of ongoing research.

This conclusion is also valid for Dempster-Shafer theory, which can be seen
as lower and upper probabilities satisfying additional constraints. Accordingly,
there are several proposals for conditioning in DS-theory, each having its own
advantages and disadvantages. By the above analysis, this is not a transitory
state until the “right” conditioning rule has been found, but a fundamental
obstacle which cannot be resolved within the frame of DS-theory.

6.2 Non-monotonic Logic

A non-monotonic logic extends classical logic with a framework of “belief revi-
sion”, i.e. conclusions derived at one point can be retracted at a later point. Non-
monotonic logic can be seen as defining a hierarchy of “default assumptions”,
which are assumed valid until observed evidence directly contradicts them. If
this happens, a revision process is executed, which incorporates the new evi-
dence and eliminates contradictions while trying to preserve as much as possible
from the old knowledge state. Now, as for example Lehman and Magidor have
observed in [LM92], one can formalize default expressions of the type “if A then
typically B” as “the probability of B given A is very high”, where “very high”
is equated to 1 − ε, for infinitesimal ε. This can be modeled by a generalized
probability algebra using the [0, 1]-interval of hyperreal numbers as a domain of
uncertainty values.

7 Conclusion

Despite many attempts, there is still no consensus on basic questions concern-
ing uncertainty and the foundations of inductive logic. In [AS01], Arnborg and
Sjödin note that reaching a consensus is not only a foundational issue but is also
important outside the ivory tower: designers of complex systems struggle with
difficult compatibility problems when they plan to integrate system components
which happen to use different ways to describe uncertainty.



In this article, we have tried to contribute to the debate on uncertainty by dis-
cerning ontologically different types of uncertainty and introducing an axiomatic
core system for uncertainty measures with the explicit aim not to prejudice struc-
tural properties of the domain of uncertainty values, but to derive them from
basic assumptions.
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