Machine Spaces: Axioms and Metrics

Jorg Zimmermann and Armin B. Cremers

Institute of Computer Science
University of Bonn, Germany

Jérg Zimmermann and Armin B. Cremers: Machine Spaces: Axioms and Metrics



Machine Spaces: Motivation and Context

e Defining a standard reference machine for universal induction.

e [nvestigation of the physical Church-Turing Thesis.
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Machine Spaces: Motivation and Context

A learning system observing and predicting an environment:
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Solomonoff Induction

e Bayesian learning in program space.
e Prior ~ 27/l |p| = length of program p in bits.

e p is executed on a fixed universal Turing machine U, which is called

the reference machine.

But on finite data x, the choice of a universal reference machine can
manipluate the posterior probability of a program consistent with x

between € and 1 — e.

~ “natural” reference machines. But how can one define “natural” for

machines?

~ axiomatic investigation of the “Machine Space”.
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Time Axioms

Structure of time from a computational point of view:

Thesis: time structure can be modelled by a totally ordered monoid:
(Associativity) Vitq,to,t3: (t1 +1t2) +t3 =t1 + (t2 + t3).
(Neutral Element) Vt:t+0=0+1t=1.

(Compatlblllty) Viti,t9,t3 : 11 <ty = t1 +t3 <ty +t3 and
t3 +t1 <tz + to.

~ time structures can be discrete, continuous, or transfinite.

~ ordinal numbers modeling a transfinite time structure have a
non-commutative addidtion: 1 4+ w # w + 1.
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The “ontology” of the machine space:

e State space X

e Input space [

e Output space O

e Program space P

e initializer: a mapping tnit from P x I to X

e output operator: a mapping out from X to O

Here “space” is used only figuratively. In the basic version of our
formalization these “spaces’ are just sets.
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A machine wrt. a time structure T' and a state space X is a mapping M
from 3 x T to X (denoted by M;(s)).

e Subset HALT of . States in HALT will be used to signal
termination of a computation.

e TTERMj;(s): denotes the set of time points ¢ with M;(s) € HALT.
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(Start) Vs € X My (S) =S (i.e., Moy = idg),
(ACtiOﬂ) \V/tl, to € T : Mt1_|_t2 = Mt2 o Mtl-

These two axioms state that the time monoid is operating on the state
space via machine M.
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Machine Axioms

The Action Axiom implies that M traces out trajectories in
state space and does not jump from START to STOP
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(Stop) Vse X ti1,to €T :t1 € TERM(s) and
tl S t2 = Mtl (S) — Mt2 (S)

That is, after reaching a termination state, nothing changes anymore,
I.e., termination states are fixpoints of the machine dynamics.
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(Well-Termination) Vs e X :TERMy(s) # 0 = 3t; €
TERMM(S) Vto € TERMM(S) st < 1.

Well-termination requires that if a machine terminates on s, i.e., reaches

HALT for some point in time, then there is a first point in time when
this happens.

If TERM;(s) is non-empty, its least element is denoted by ¢*.
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Implementation

Definition: A function f : I — O is implemented by p € P on M iff

f(x) = out( My« (init(p, x))
for all x € I.

Functions f which are implementable on a machine M are called

“M-computable”. [p]ys denotes the (partial) function implemented by p
on M.
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Measuring Resources: Time

Let time,! (x) = min(TERMy; (init(p, x))).

Then define a transfer function between machines as follows:

7 :T — T is an admissible time transfer function (attf) from M; to M
iff 7 is monotone and Vp;, € Pidps € Ps @ [p1|yv, = [p2]m, and

Vo € I : time)!? (x) < 7(timey! (x)).

Transfer functions will be used to measure the “time distance” of two
machines in machine space.
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M-dependent Computability and Complexity

A machine M defines implicitly a set of functions, the M-computable
functions:

COMP(M)=A{f|f:1— O, fis M — computable}

But it also defines complexity classes in analogy to the classical
complexity classes:

TIME(g) = {f|f € COMP(M), [plar = f,timey' (z) < g(x)}
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Metrics on Machine Space

M and M, are time-compatible if they operate on the same time
structure, input space and output space.

A generalized metric A®) on machine space is now defined as follows:
AW (M, My) = {7|7 is an attf from M; to Ms}.

This roughly corresponds to statements like: “Machine A can simulate
machine B with a logarithmic factor”.
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Metrics on Machine Space

One can combine and compare sets of functions much like single
functions. Let a, 3 C T

aof:={romn € a,m € [}.

a< BiffVry € fdn € a:m < 1.
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Metrics on Machine Space

e By these definitions sets of attfs become a directedly ordered

monoid (dom).

e Directed monoids can be used as ranges for generalized metrics,
allowing many standard constructions of topology.

Our metric can be classified as a dom-valued directed pseudometric,

satisfying the following triangle inequality:

AW (M, M) < AW (My, Ms) o AW (M, My).
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Open Problems

e Additional Axioms?

e How to avoid that all the work is done by input and ouput
operators?

e How to define a “Standard Reference Machine” (SRM), which can
serve as a anchor point for concrete complexity statements?
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Open Problems

e |dea: Define the SRM as the “center” of the smallest ball enclosing
current real world computing machines.

ball enclosing current
machines

Standard Reference Machine
(center of enclosing ball)
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