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Machine Spaces: Motivation and Context

• Defining a standard reference machine for universal induction.

• Investigation of the physical Church-Turing Thesis.
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Machine Spaces: Motivation and Context

A learning system observing and predicting an environment:
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Solomonoff Induction

• Bayesian learning in program space.

• Prior ∼ 2−|p|, |p| = length of program p in bits.

• p is executed on a fixed universal Turing machine U , which is called

the reference machine.

But on finite data x, the choice of a universal reference machine can

manipluate the posterior probability of a program consistent with x

between ε and 1− ε.

 “natural” reference machines. But how can one define “natural” for

machines?

 axiomatic investigation of the “Machine Space”.
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Time Axioms

Structure of time from a computational point of view :

Thesis: time structure can be modelled by a totally ordered monoid :

(Associativity) ∀t1, t2, t3 : (t1 + t2) + t3 = t1 + (t2 + t3).

(Neutral Element) ∀t : t+ 0 = 0 + t = t.

(Compatibility) ∀t1, t2, t3 : t1 ≤ t2 ⇒ t1 + t3 ≤ t2 + t3 and

t3 + t1 ≤ t3 + t2.

 time structures can be discrete, continuous, or transfinite.

 ordinal numbers modeling a transfinite time structure have a

non-commutative addidtion: 1 + ω 6= ω + 1.
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Machine Axioms

The “ontology” of the machine space:

• State space Σ

• Input space I

• Output space O

• Program space P

• initializer : a mapping init from P × I to Σ

• output operator : a mapping out from Σ to O

Here “space” is used only figuratively. In the basic version of our

formalization these “spaces” are just sets.
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Machine Axioms

A machine wrt. a time structure T and a state space Σ is a mapping M

from Σ× T to Σ (denoted by Mt(s)).

• Subset HALT of Σ. States in HALT will be used to signal

termination of a computation.

• TERMM (s): denotes the set of time points t with Mt(s) ∈ HALT .
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Machine Axioms

(Start) ∀s ∈ Σ : M0(t)(s) = s (i.e., M0(t) = idΣ),

(Action) ∀t1, t2 ∈ T : Mt1+t2 = Mt2 ◦Mt1 .

These two axioms state that the time monoid is operating on the state

space via machine M .
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Machine Axioms
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The Action Axiom implies that M traces out trajectories in
state space and does not jump from START to STOP 
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Machine Axioms

(Stop) ∀s ∈ Σ, t1, t2 ∈ T : t1 ∈ TERMM (s) and

t1 ≤ t2 ⇒Mt1(s) = Mt2(s).

That is, after reaching a termination state, nothing changes anymore,

i.e., termination states are fixpoints of the machine dynamics.
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Machine Axioms

(Well-Termination) ∀s ∈ Σ : TERMM (s) 6= ∅ ⇒ ∃t1 ∈
TERMM (s) ∀t2 ∈ TERMM (s) : t1 ≤ t2.

Well-termination requires that if a machine terminates on s, i.e., reaches

HALT for some point in time, then there is a first point in time when

this happens.

If TERMM (s) is non-empty, its least element is denoted by t∗.
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Implementation

Definition: A function f : I → O is implemented by p ∈ P on M iff

f(x) = out(Mt∗(init(p, x))

for all x ∈ I.

Functions f which are implementable on a machine M are called

“M -computable”. [p]M denotes the (partial) function implemented by p

on M .
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Measuring Resources: Time

Let timeMp (x) = min(TERMM (init(p, x))).

Then define a transfer function between machines as follows:

τ : T → T is an admissible time transfer function (attf) from M1 to M2

iff τ is monotone and ∀p1 ∈ P1∃p2 ∈ P2 : [p1]M1 = [p2]M2 and

∀x ∈ I : timeM2
p2

(x) ≤ τ(timeM1
p1

(x)).

Transfer functions will be used to measure the “time distance” of two

machines in machine space.
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M-dependent Computability and Complexity

A machine M defines implicitly a set of functions, the M -computable

functions:

COMP (M) = {f |f : I → O, f is M − computable}

But it also defines complexity classes in analogy to the classical

complexity classes:

TIMEM (g) = {f |f ∈ COMP (M), [p]M = f, timeMp (x) ≤ g(x)}
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Metrics on Machine Space

M1 and M2 are time-compatible if they operate on the same time

structure, input space and output space.

A generalized metric ∆(t) on machine space is now defined as follows:

∆(t)(M1,M2) = {τ |τ is an attf from M1 to M2}.

This roughly corresponds to statements like: “Machine A can simulate

machine B with a logarithmic factor”.
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Metrics on Machine Space

One can combine and compare sets of functions much like single

functions. Let α, β ⊆ TT :

α ◦ β := {τ1 ◦ τ2|τ1 ∈ α, τ2 ∈ β}.

α ≤ β iff ∀τ2 ∈ β∃τ1 ∈ α : τ1 ≤ τ2.
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Metrics on Machine Space

• By these definitions sets of attfs become a directedly ordered

monoid (dom).

• Directed monoids can be used as ranges for generalized metrics,

allowing many standard constructions of topology.

Our metric can be classified as a dom-valued directed pseudometric,

satisfying the following triangle inequality:

∆(t)(M1,M3) ≤ ∆(t)(M2,M3) ◦∆(t)(M1,M2).
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Open Problems

• Additional Axioms?

• How to avoid that all the work is done by input and ouput

operators?

• How to define a “Standard Reference Machine” (SRM), which can

serve as a anchor point for concrete complexity statements?
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Open Problems

• Idea: Define the SRM as the “center” of the smallest ball enclosing

current real world computing machines.
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