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An axiom system for machine spaces is introduced. Time is modeled as a totally ordered monoid,
thus allowing discrete, continuous, and transfinite time structures. A generalized metric on these
machine spaces is defined, having values in a directedly ordered monoid. This enables the notion of
e-balls in machine space, which, for example, can be used to explore model risk and robustness in
statistics.

1 Introduction

The notion of computability is inseparably linked to the notion of a machine, an object realizing the
computational process. The specific machine chosen determines the set of computable functions and
influences complexity classes, i.e., sets of functions computable within a specific resource bound. Here
we do not consider specific machine classes, but try to use the axiomatic method in order to investigate
the notion of an abstract machine and its implied set of computable functions from a general point of
view.

2 Time Axioms

Time is the driver of the computational processes, so we want to isolate the abstract properties of time
which are relevant from a computational point of view. Here we model time as a totally ordered monoid,
i.e., all time elements can be compared and be combined by an associative operation, denoted by "+,
which has a neutral element 0;. Furthermore, the order structure and the algebraic structure are compati-
ble:

(Compatibility) Vti,tr,63:H) <thrb =tH+B<th+mandtz+t <t3+1.

Compatibility is required in both possible ways because the monoid operation has not to be commutative
(which is, for example, the case for the sum of ordinal numbers).

3 Machine Axioms

Machines operate on a state space X, about which we want to say nothing specific here. Further we
introduce the input space I, output space O, and program space P. An initializer is a mapping init from
P x I to X and an output operator is a mapping out from X to O. A machine wrt. a time structure 7 and
a state space X is a mapping M from X x T to X, denoted by M, (s). Finally, there is a subset HALT of .
States in HALT will be used to signal termination of a computation. Let TERM (M, s) denote the set of
time points ¢ with M, (s) € HALT. Now we require the following axioms:

(Action) Vi1, €T : My 41, = My, 0 My, .
© J. Zimmermann & A.B. Cremers

This work is licensed under the
Creative Commons Attribution License.

Submitted to:
MCU 2013


http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
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(Start) Vs € X: My, (s)=s (.e., My, = idx).
These two axioms states that the time monoid is operating on the state space via machine M.
(Stop) VseX,f,tb €Tty € TERM(M,s) and 11 <ty = My, (s) = M, (s).

That is, after reaching a termination state, nothing changes anymore, i.e., termination states are fixpoints
of the machine dynamics.

(Well-Termination) Vs € X:TERM(M,s) # 0= 3t; € TERM(M,s) ¥ty € TERM(M,s) : t; < t,.

Well-termination requires that if a machine terminates on s, i.e., reaches HALT for some point in time,
then there is a first point in time when this happens, or, equivalently, the set of time points taking s to
HALT has a least element, if it is not empty. If TERM (M, s) is non-empty and 7, its least element, then
define M(s) := out (M, (s)), otherwise M (s) is left undefined.

Definition: A function f : I — O is implemented by p € P on M iff f(x) = M (init(p,x)) forall x € I.

Functions f which are implementable on a machine M are called “M-computable”. [p]y denotes the
function implemented by p on M.

4 A Metric on Machine Spaces

Metrics are a fundamental tool to organize sets. They enable an intuitive understandig of the relationship
between objects and a form of geometric reasoning about the objects, e.g. by using the triangle inequality.
We now want to introduce a metric on machine spaces which represents some kind of distance between
different machines by relating the resources needed by the machines to solve the same problems. Here
we focus on time complexity as our resource measure:

Definition: time (x) = min(TERM (M, init(p, x))).
Definition: 7: 7 — T is an admissible time transfer function (attf) from M\ to M, iff T is monotone and
Vp1 € Pi3p2 € Py [pilm, = [p2)m, and Vx € I : timel? (x) < t(time)! (x)).

Two machines M| and M, are time-compatible if they operate on the same time structure, input space
and output space. Note that the state space and program space have not to be the same. Next we define
a generalized metric A, which takes two time-compatible machines and maps them on an element of
P(TT), i.e., the distance is represented by a set of functions on the time structure 7':

A(My,M;) = {t|7 is an attf from M, to M, }.

We use the whole set of attfs, because there seems to be no obvious way to single one out. Additionally,
one can combine and compare sets of functions much like single functions. However, future research
may identify a canonical element in the set of attfs, maybe by introducing additional axioms.

Definition: Let o, C T”. Then define their composition as @ o § := {1 o 2|T] € &, 7, € B}.
Definition: o < B iff V1, € B3t e a: 11 < 1.

With these definitions the sets of attfs become a directedly orderd monoid (dom). A directed order is
a partial order where two elements always have an upper bound, and directed monoids can be used as
ranges for generalized metrics, allowing many standard constructions of topology [3l]. Let < 7 > denote
the upward closure of an attf, then < idr > is the neutral element of this monoid, also denoted by O7. Our
metric can then be classified as a dom-valued directed pseudometric, i.e., it non-positive and asymmetric
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(directed), and not strict, i.e., A, (M}, M;) = Or does not imply M; = M,. But machines have self-distance
zero and satisfy the following triangle inequality:

A,(M],M3) S At(Mz,Mg,) OAt(Ml,M2>

Machine models play an important part in many fields of science, not always explicitly acknowledged.
For example, the choice of a reference machine for defining the complexity of statistical models is cen-
tral for approaches to general induction. It would be interesting to evaluate the implications of choosing
a specific reference machine by analysing how sensitive the drawn conclusions are to variations of the
reference machine. The concept of €-balls in machine space could lead to a systematic way to facilitate
such robustness analyses, thus addressing the vital problem of “model risk”, i.e., the problem of unre-
liable conclusions which are very sensitive to the chosen model class. Also, we hope that advances in
machine theory will lead to a “standard reference machine”, a default reference machine for which there
is a consensus that it takes a canonical position in machine space.

The proposed ideas and concepts are based on work started and continued in [1], [5], [6], [2], and

[4].
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