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Abstract

The antenna placement problem (APP) is an important task in the
design of radio networks. We introduce a model that addresses cover,
traffic demand, interference, different parameterized antenna types, and
the geometrical structure of cells. The resulting optimization problem
is constrained and multi-objective. We have developed an evolutionary
algorithm, capable of dealing with more than 700 candidate sites in the
working area. The results show that the APP is tractable.

Nowadays the APP is solved by experts, only supported by software
tools for visualization and manipulation of network designs. The auto-
matically generated designs enable experts to focus their efforts on the
difficult parts of a design problem.

1 Introduction

Engineering of current mobile radio networks (mainly GSM at present) consists
of several different tasks: traffic estimation, radio antenna positioning, broadcast
control, frequency assignment etc. Within a selected geographic area where the
radio network must be installed or extended, operators define the number of
radio transmitters to be installed and the number of frequencies to be assigned
to the area. These parameters are then used for the placement of antennas and
the frequency assignment.

The purpose of the Antenna Placement Problem (APP) is to optimize the radio
coverage of an area. The main objective of the Frequency Assignment Prob-
lem (FAP) is to minimize electromagnetic interference due to multiple use of
frequencies in different parts of the network. Whereas FAP has been inten-
sively investigated [Ple94, RC97, CM98a, CM98b], little has been done for APP
[LHKC98, HV98]. The reason is that APP is much more difficult to model, and
even a simple model — treating only coverage of the working area — can be shown
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to be NP-complete [ESW98]. Furthermore APP is a multi-objective problem
with all its known difficulties.

Within the EU project ARNO (Algorithms for Radio Network Optimization,
IT Project 23248) the APP has been investigated. In the paper we first de-
scribe the mathematical model used within ARNO (see also [RC98]). Tt consists
of points defined on a grid, e.g. service test points, traffic test points and can-
didate sites. Radio transmission is modelled by a propagation loss matrix. The
objectives are to minimize cost, to minimize the interference level and to have
geometrically “nice” cells. These objectives are components of a cost function
which guides the evolutionary search.

The outline of the paper is as follows. First we develop a mathematical descrip-
tion of the problem. In Section 3 the objectives and constraints of the problem
are defined. Our evolutionary algorithm is presented in Section 4. Results from
real world benchmarks are discussed in Section 5.

2 Antenna Placement Problem

Developing an appropriate model is one of the most difficult tasks in solving
complex real world problems. The model for the APP used in this paper is the
result of several loops of design, evaluation and redesign. The quality of solutions
is assessed by two constraints, which deal with cover and traffic demand, and
three objectives, which address economical and technical aspects. In order to
define our APP-model we introduce the following concepts:

1. Input Data
e A set R of Reception Test Points (RTP), given by coordinates (x,y).

e A set S of Service Test Points (STP). A signal quality threshold Sy is
assigned to each STP, usually -90 dBm.

e A set T of Traffic Test Points (TTP). Each TTP carries traffic demand,
measured in Erlang.

o A set L of coordinates of Candidate Sites.

Note that 7 C S C R. Usually the RTPs form a rectangular grid. The position
of a candidate site does not have to coincide with a RTP. Figure 1 shows an
example of a data map. Candidate sites are displayed as black circles, RTPs are
colored white, STPs light grey and TTPs are colored in darker shades of grey,
according to increasing traffic demand.

e A Propagation Loss Matrix PLM; for each candidate site L; defines the
signal losses (in dBm) from site L; to all RTPs.

o An Angle of Incidence Matriz AIM; for each candidate site L; defines the
vertical angles at which the RTPs appear to site L;.

2. Antenna Types

e omnidirectional antenna (OD):

Parameters: Power, ranging from 26 dBm to 55 dBm in steps of 1 dBm.
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Figure 1: Data Map

e large directive antenna (LD):

Parameters: Power, ranging from 26 dBm to 55 dBm. Azimuth, varying
in steps of 1°. Tilt, ranging form 0° to -15° in steps of 1°.

e small directive antenna (SD):

Parameters: same as for large directive antenna.

All antenna types can handle a traffic of up to 43 Erlang. Associated with an
antenna type are antenna diagrams: a vertical diagram (VDIAG) for omnidirec-
tional antennas and vertical and horizontal diagram (HDIAG) for the directive
ones. These diagrams define the relation between the radiant signal loss (in
dBm) and the radial deviation from the signal main axis, measured in degree.
Furthermore each antenna type has a specific antenna gain (G) and a specific
antenna loss (A), measured in dBm:

| Antenna Type || G | A |
oD 11.15 | 7.00
LD 15.65 | 7.00
SD 17.15 | 7.00

Table 1: Antenna Gain and Antenna Loss

AT;; denotes the jth antenna at site L;. Accordingly, Power;;, Gij, .. .denote
the respective parameters of AT;;, and (u;,v;) are the coordinates of site Lj;.
The field strength Fj;(z,y) of antenna AT;; at reception test point r = (z,y) is
computed according to the following formula:



—HDIAG[% catan2(y — vy, T — u;) — Azimuthij] .

VDIAG and HDIAG are the diagrams associated with the antenna type of ATj;.
If AT;; is omnidirectional, we neglect the HDIAG term and set T'ilt;; to zero.
atan2(z,y) is similar to arctan(z/y), except that the signs of both arguments
are used to determine the quadrant of the result.

A configured antenna is a pair defining an antenna type and a complete list of
parameter values for that antenna type, e.g. (LD, [Power = 50 dBm, Azimuth
= 90°, Tilt = -5°]). A configured site is a site carrying at least one configured
antenna. A configured site can carry either one omnidirectional antenna or at
most three directive antennas. A solution for an APP is a list of configured
sites. The cell C;; of an antenna ATj; is the set of STPs s receiving the best
signal (i.e. strongest field strength) from AT;;, provided that the signal is above
the signal quality threshold of s. The traffic load of an antenna ATj; is the
sum of the traffic demand of all TTPs contained in the cell Cj; of B;;. An
antenna with traffic load above 43 Erlang is called overloaded. The percentage
of handled traffic demand of a solution is called traffic hold:
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TrafficHold = TotalTraffic AT;AT min( TrafficLoad(AT),43 Erlang),

where TotalTraffic is the summed traffic demand of all TTPs and AT is the set
of all antennas. The percentage of lost traffic demand is called traffic loss, i.e.
TrafficLoss = 1 - TrafficHold.

3 Constraints and Objectives

A feasible solution has to fulfill the following two constraints:
e Traffic Constraint (TC): The traffic load of an antenna is < 43 Erlang,

e Cover Constraint (CC): Every STP receives at least one signal above
its signal quality threshold.

Note that the constraints imply that all TTPs of a feasible solution are contained
in a non-overloaded cell. Thus the traffic hold of a feasible solution is 100%. The
next step is the definition of one or more objectives. From the point of design and
evaluation of solutions it is highly desirable to have only one objective. But it is
often very difficult to combine the different “quality-dimensions” of a solution
into one single objective. So, we first introduce three “quality-dimensions” as
objectives to evaluate solutions. For the evolutionary algorithm these objectives
will be combined into one cost function, see section 4. The objectives are:

e Site Cost:
SC = number of used Sites

e Interference Level:

IL = % > Y max(F - Sp,0)
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where Fy is the set of field strengths of all antennas at STP s. Hj is
the handover set, consisting of the 4 strongest signals at STP s. S, is a
sensibility threshold, usually -99 dBm.

e Cell Shape Factor:

1 boundary(C')

SF=———
| C’ells | a,rea,(C)

CeCells

where boundary(C) is the number of boundary points of cell C, i.e. the
number of s € C having a s’ € S\ C in their 8-neighborhood, and area(c)
is the number of interior points of C, i.e. the number of non-boundary
points of C. This measure is inspired by a ratio widely used in physics:
the ratio between the square root of the surface and the third root of the
volume of a body. This ratio is called shape factor. It is dimensionless,
scale invariant, and reaches its minimum value for a ball.

Site cost addresses the economical, interference level and cell shape factor ad-
dress technical aspects of the APP. The intention of the interference objective
is to make the frequency assignment problem (FAP) as simple as possible. The
shape factor objective prefers geometrically well-formed cells, which is highly de-
sirable for several reasons, e.g. minimization of drop-out probability. Within the
ARNO project, the objective cell shape factor has not been used. Instead there
was a “connectivity constraint” which ensures that all cells are topologically
connected. But it turned out that this constraint has several disadvantages:

1. it is very difficult to fulfill,
2. it is very sensitive to small changes in design parameters,

3. connected cells can still be very irregular.

For these reasons we have replaced the connectivity constraint by the shape
factor objective, which seems to avoid some or all of the above problems.

4 Evolutionary Approach

The above problem is solved by an evolutionary algorithm consisting of three
phases:

e Initialization Phase
e Repair Phase

e Optimization Phase

This scheme provides a flexible base for the adaptation of the abstract meta-
heuristic Evolutionary Strategy (ES) to the APP. A general introduction into
the field of evolutionary search can be found in [Sch95] and [AL97]. The internal
structure of the three phases is as follows:



1: Initialization Phase
INITIALIZE Network (guided by heuristic rules)
2: Repair Phase (repairs violated constraints)

REPEAT

SELECT Repair Operator

APPLY selected Repair Operator on Network
UNTIL Network is feasible OR. Stop Condition

3: Optimization Phase (optimizes feasible network)

REPEAT
SELECT Climb Operator
APPLY selected Climb Operator on Network
APPLY Local Repair on Network

UNTIL Stop Condition

We use two types of cost functions:

1. Hard Cost Function, measuring violation of constraints in the repair phase,

2. Soft Cost Function, measuring the cost of a feasible solution in the opti-
mization phase.

Our cost functions are linear combinations of the single cost or penalty terms.
For example:

HardCost = ¢1 - TrafficLoss + ¢2 - UncoveredSTP ,

where ¢ and ¢» are weight factors representing the relative importance of the
single terms. UncoveredSTP denotes the number of uncovered STP. An example
for a soft cost function is:

SoftCost = - SC + 1o -IL + 13- SF

4.1 Initial Solutions

In order to get a reasonable initial solution we exploit the local structure around
a site. For this purpose we introduce the following notions:
traffic demand density (in area A):

sum of traffic demand in A divided by the area of A

candidate site density (in area A):
number of candidate sites in A divided by the area of A
Depending on these densities in the neighborhood of a site an initial placement

probability for this site is computed. Then a configuration of antennas is placed
at this site according to the computed probability. The user has different choices



for the configuration. Repeating this procedure for all sites generates an initial
solution.

The formula for the placement probability reflects the local structure around
a site by balancing the local traffic demand density and the local candidate
site density. The formula is split into two parts because we have to deal with
the cover constraint as well. Usually the traffic demand restricts the size of
a cell. But if the demand density drops below a critical value (p}. ), the cell
can become so large (with regard only to the traffic constraint) that the field
strength does not reach the service threshold at the cell periphery. Hence in
this case the placement probability should depend on the mazimal cell size of
a site and not on the local traffic demand.

This approach leads to ‘good’ initial solutions if the problem structure is not
too irregular (e.g. strongly varying densities). For a given candidate site L; let

prp = local traffic demand density [prp] = Erlang - m=2 |
p,, = local candidate site density [p,]=m>* ,

Comaz = maximal traffic capacity [Cmaz] = Erlang
Apnee = maximal cell area [Apmaz] = m?

Cmaz, the maximal traffic capacity of site L;, depends on the placement policy.
The placement policy defines what configuration will be placed initially at a
selected site. If an omnidirectional antenna is placed, then Ci,,, is 43 Erlang.
If the policy defines to place two or three directive antennas, C),q, takes the
values 86 and 129 Erlang, respectively. A4z, the maximal cell size of a site L;,
is defined as the area where the field strength of an omnidirectional antenna with
maximal power — placed at site L; — is above the service threshold. These are
the parameters we need in order to compute the placement probability. A4z
is computed by the following steps:

1. Place an omnidirectional antenna at site L; with maximal power.

2. Let N be the number of STPs receiving a good signal from the placed
antenna.

2
mesh

3. Apwe=N-A (Aesn = width of square mesh)

Our formula for the placement probability is given by:

min ( C,,lm -’:)TTE_’, 1) , pyp >pL, (critical constraint: traffic)
p =
min(—— -1, 1) , otherwise (critical constraint: cover)
mas P,
where p? = Craz/Amaz-

For the estimation of the parameters p,,, and p, we assume that the distribu-
tions of candidate sites and traffic demand are not too irregular. Thus we can



use the ideal situation of a network of hexagon cells (see Figure 2) as orientation
to derive our density estimators. There are a lot of other reasonable estimators,
especially if the ‘not too irregular’ assumption fails. However, note that the
initial placement probabilities need to be only approximately ‘correct’, because
we are interested in an initial solution and not in a final one.

Figure 2: Hexagon Network

With regard to Figure 2 we use the following estimation procedures for the
densities p,,, and p, in the neighborhood of a candidate site L;:

Local Candidate Site Density

1. Compute the distances from site L; to its 6 nearest candidate sites:
d17 s d6
6
2. d=1§> d;
i=1
3. Ahezagon = @ -d? (area of hexagon)
_ 1
4. Pr; = Aheczagon

The following estimator of traffic demand density p,., uses the notion of the
bounding box of a set A C R%. It is a rectangle

e with sides parallel to the coordinate axes,
e containing A,

e with minimal area.



We use the bounding box, because in our context not only the accuracy, but
also the computational efficiency of an estimator is important.

Local Traffic Demand Density

1.

4.2

boz = bounding box of the 6 nearest candidate sites

Chon = Z e(t) (e(t) = traffic demand at TTP t)
t € TNbox

Apor = area of box

p. = Lou
D box

Repair Phase

After finishing the initialization phase, the candidate solution is analyzed: if it
violates a constraint, the design process enters the repair phase. The goal of
the repair phase is to transform the candidate solution into a feasible one. The
transformation is carried out by a number of heuristic operators or, for short,
heuristics. The implemented heuristics are:

RepairTraffic: tries to introduce new antennas in order to absorb traffic
overload of nearby cells,

RepairHole: tries to introduce new antennas in the neighborhood of
cover holes,

DecreasePower: decreases power of an antenna with traffic overload step
by step until the overload vanishes or the minimal power is reached,

IncreasePower: increases power of an antenna with traffic load <« 43 Er-
lang step by step until the maximal traffic load or the maximal power (55
dBm) is reached,

ChangeAzimuth: changes the azimuth of an antenna by a random value,
ChangeTilt: changes the tilt of an antenna by a random value,

DissipateTraffic: tries to reduce traffic over- and underload of all anten-
nas using a dissipation algorithm (see below).

The dissipation algorithm used in the DissipateTraffic-rule executes the follow-
ing procedure:

1. Run through the list of antennas.

2. If an antenna with power > 26 dBm has traffic overload
then decrease its power by 1 dBm.

3. Repeat until a run through the antenna list results in no change.



In many cases the effect of this rule is that traffic load peaks will dissipate over
the whole network until there is no more traffic overload. This rule has proven
to be very successful in eliminating traffic overload.

A selection operator chooses a heuristic operator from the above list, which
is then applied to the network. Currently we use uniform selection, i.e. each
heuristic is chosen with the same probability. The transformed network is only
accepted if its hard cost is lower than or equal to the hard cost of the original
one. This process will be repeated until a feasible solution results — then the
design process enters the optimization phase — or the termination criterion (see
4.4) is reached. In the latter case the design process will be aborted.

4.3 Optimization Phase

The optimization phase has a similar structure to the repair phase. The two
main differences are:

e A soft cost function instead of a hard cost function guides the search.

e If a network operator destroys feasibility of a solution, then it is tried
to repair this new candidate solution in order to maintain feasibility. If
feasibility cannot be restored, the new candidate solution will be discarded.

For the transformation of networks there are additional heuristics available:

e RemoveWeakAntenna: looks for an antenna with low traffic load or
small cell size and deletes it,

e RemoveAntenna: deletes a random antenna,

e RemoveWeakSite: deletes all antennas of a weak site, e.g. a site with
low traffic load,

e RemoveSite: deletes all antennas at a random site,

e IncreaseCompactness: looks for a cell with high shape factor and re-
duces power or increase tilt of the respective antenna,

e Reducelrregularities: introduce new antennas guided by the irregular-
ity measure (see below) in order to reduce regions with irregular geomet-
rical and topological cell structures.

e MinimizePower: reduces power of all antennas by the same amount as
long as no new uncovered STPs emerge. Thus the cell structure stays
unaltered while the interference level is reduced.

One major problem in the optimization phase is the construction of networks
with a reasonable cell topology and geometry. Due to irregular path loss ma-
trices (reflecting irregular geographical structures) many cells tend to have an
irregular shape or even get disconnected. Therefore we introduce a local mea-
sure for ‘geometrical irregularity’. This measure guides the optimization process
in order to reduce such irregularities. The local irregularity I,.(x) — defined in
analogy to the cell shape factor — in a square-shaped neighborhood of a STP x
is computed according to the following formula:
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I(x) = @ TIE > iSy)  (r=0,1,..)

[y —x[[eo <r

S(y) measures the ‘point surface’ of y, i.e. S(y) is the number of direct neighbors
of y belonging to another cell. We use 8-connectivity, hence S(y) varies between
0 and 8. Using the maximum norm || - ||s, the parameter r determines the size
of a square around the point x. For our networks we use r-values between 5
and 10. Note that 0 < I,.(x) < 1 for all STPs x.

The above formula is only one of many possibilities to implement an irregularity
measure. Future research will show whether there are more suitable variants.

4.4 Termination Rules

A general problem of heuristic search processes is the question of when to stop
them. We have not investigated a problem-specific approach, but want to em-
phasize that this is an interesting open question. Early detection of low chance
for good improvements can drastically reduce computation time by focussing
computational resources on promising approaches.

The most common domain-independent termination rules are the Max Rule
and the Stagnation Rule. The Max Rule defines a priori an upper bound on the
number of search steps, whereas the Stagnation Rule observes the development
of the solution cost and stops the process if over a predefined number of steps
— the lag interval — the decrease of cost (measured in percent) drops below a
given critical threshold.

Within the ARNO project, we used mainly the stagnation rule, because it real-
izes a good compromise between ease of implementation and adaptability to an
individual process evolution.

It is noteworthy that the two parameters of the stagnation rule — the length of
the lag interval and the critical threshold — are important control parameters.
In general, stricter parameter values (shorter lag interval, higher threshold) lead
to reduced average computation time, but also to lower average solution quality.
So, depending on available resources and on performance requirements (both,
average running time and solution quality), it is a Meta-Optimization problem
to choose the parameters of the stagnation rule. Based on several experiments,
parameter values in the intervals listed below have proven to be useful:

| Parameter | Value Interval |
lag interval 50 — 100 steps
threshold percentage 0-5%

Table 2: Parameter Values for Stagnation Rule
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5 Results

Within the ARNO project we have investigated eight real world problems. The
data were provided by CNET !. The first four networks — denoted by N1.0, ...,
N4_0 — are greenfield design problems, i.e. all candidate sites are initially un-
used. Networks N1_1, ..., N4_1 are ezpansion design problems, i.e. an existing
solution should be expanded in order to meet new requirements, e.g. increased
traffic demand.

We now present results for N1_.0 and N3.0 in detail. N1_0 defines a highway
scenario, N3_0 a medium size town scenario. The discussion of the expansion
design problem is beyond the scope of this paper.

| Network || Size | Candidate Sites | Total Traffic (Erlang) |
N1.0 40 km x 170 km 250 3210.94
N3.0 50 km x 46 km 568 2988.08

Table 3: Network Data

ARNO: Data Map [T E3)
°

Figure 3: Data Maps of Network N1_0 and Network N3_0

Tables 4 and 5 display feasible solutions generated by our evolutionary search
algorithm for Network N1.0 and Network N3_0. They have been obtained with
the weights 11, ¥2, and 3 given in the tables. The weights have been set so
that one objective got 10 times more weight than the other two. The weights
¢1 and ¢2 of the hard cost function used in the repair phase have been set to 1.

IFrance Telecom Research and Development Center
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The number of generations to compute these solutions lies between 1000 and
5000.

[Best ... | # Sites (25) | L [SF ] OD [ LD | SD [ 41 | 45 | ¥ |
# Sites 38 70.0 | 6.1 2 6 | 102 || 10 1 1
IL 44 25.6 | 6.4 9 9 90 1110 1
SF 43 | 113.3 | 5.3 41 31 84 1 1|10

Table 4: Best computed solutions for Network1_0

[ Bestin... [[ # Sites (23) [ IL[SF [ OD [LD [ SD [ ¢ [ 42 | ¥3 |

# Sites 30 | 100.5 | 9.3 1 0| 87| 10 1 1
IL 36 | 349 | 9.0 11 3| 72 11 10 1
SF 32 | 162.0 | 6.8 0 7| 84 1 1110

Table 5: Best computed solutions for Network3_0

1. The #Sites-column contains the number of used sites. The number in
parentheses is a lower bound for the number of needed sites resulting from
the total traffic in a network.

2. The IL- and the SF-column display the interference level (in dBm per
STP) and the average shape factor. Optimal shape factor in the euclidean
geometry is 3.54, only reached by a circle. The shape factor of a hexagon
is 3.72.

3. The #0D-, LD- and #SD-columns contain the number of used omnidi-
rectional, large directive and small directive antennas, respectively.

Different weights lead to different solutions. There is a trade-off between the
different objectives. We are currently trying to find a setting of the weights 1,
12, and ¥3 leading to solutions which are a good compromise between the three
objectives. This is currently done in cooperation with a network operator.

6 Conclusion

We have introduced an advanced model for the antenna placement problem,
which addresses economical and several technical aspects. This leads to a con-
strained and multi-objective optimization problem, which we have tackled with
an evolutionary algorithm. The results obtained so far are encouraging. Get-
ting still better results is not a problem of the evolutionary algorithm, but of
developing the used model. We are currently discussing with network operators
how to extend the model in order to make it still more realistic.
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