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al Foundation LabGMD - Center for Information Te
hnologyGermanyAbstra
tThe antenna pla
ement problem (APP) is an important task in thedesign of radio networks. We introdu
e a model that addresses 
over,traÆ
 demand, interferen
e, di�erent parameterized antenna types, andthe geometri
al stru
ture of 
ells. The resulting optimization problemis 
onstrained and multi-obje
tive. We have developed an evolutionaryalgorithm, 
apable of dealing with more than 700 
andidate sites in theworking area. The results show that the APP is tra
table.Nowadays the APP is solved by experts, only supported by softwaretools for visualization and manipulation of network designs. The auto-mati
ally generated designs enable experts to fo
us their e�orts on thediÆ
ult parts of a design problem.1 Introdu
tionEngineering of 
urrent mobile radio networks (mainly GSM at present) 
onsistsof several di�erent tasks: traÆ
 estimation, radio antenna positioning, broad
ast
ontrol, frequen
y assignment et
. Within a sele
ted geographi
 area where theradio network must be installed or extended, operators de�ne the number ofradio transmitters to be installed and the number of frequen
ies to be assignedto the area. These parameters are then used for the pla
ement of antennas andthe frequen
y assignment.The purpose of the Antenna Pla
ement Problem (APP) is to optimize the radio
overage of an area. The main obje
tive of the Frequen
y Assignment Prob-lem (FAP) is to minimize ele
tromagneti
 interferen
e due to multiple use offrequen
ies in di�erent parts of the network. Whereas FAP has been inten-sively investigated [Ple94, RC97, CM98a, CM98b℄, little has been done for APP[LHKC98, HV98℄. The reason is that APP is mu
h more diÆ
ult to model, andeven a simple model { treating only 
overage of the working area { 
an be shown� email: Joerg.Zimmermann�gmd.de 1



to be NP-
omplete [ESW98℄. Furthermore APP is a multi-obje
tive problemwith all its known diÆ
ulties.Within the EU proje
t ARNO (Algorithms for Radio Network Optimization,IT Proje
t 23243) the APP has been investigated. In the paper we �rst de-s
ribe the mathemati
al model used within ARNO (see also [RC98℄). It 
onsistsof points de�ned on a grid, e.g. servi
e test points, traÆ
 test points and 
an-didate sites. Radio transmission is modelled by a propagation loss matrix. Theobje
tives are to minimize 
ost, to minimize the interferen
e level and to havegeometri
ally \ni
e" 
ells. These obje
tives are 
omponents of a 
ost fun
tionwhi
h guides the evolutionary sear
h.The outline of the paper is as follows. First we develop a mathemati
al des
rip-tion of the problem. In Se
tion 3 the obje
tives and 
onstraints of the problemare de�ned. Our evolutionary algorithm is presented in Se
tion 4. Results fromreal world ben
hmarks are dis
ussed in Se
tion 5.2 Antenna Pla
ement ProblemDeveloping an appropriate model is one of the most diÆ
ult tasks in solving
omplex real world problems. The model for the APP used in this paper is theresult of several loops of design, evaluation and redesign. The quality of solutionsis assessed by two 
onstraints, whi
h deal with 
over and traÆ
 demand, andthree obje
tives, whi
h address e
onomi
al and te
hni
al aspe
ts. In order tode�ne our APP-model we introdu
e the following 
on
epts:1. Input Data� A set R of Re
eption Test Points (RTP), given by 
oordinates (x,y).� A set S of Servi
e Test Points (STP). A signal quality threshold Sq isassigned to ea
h STP, usually -90 dBm.� A set T of TraÆ
 Test Points (TTP). Ea
h TTP 
arries traÆ
 demand,measured in Erlang.� A set L of 
oordinates of Candidate Sites.Note that T � S � R. Usually the RTPs form a re
tangular grid. The positionof a 
andidate site does not have to 
oin
ide with a RTP. Figure 1 shows anexample of a data map. Candidate sites are displayed as bla
k 
ir
les, RTPs are
olored white, STPs light grey and TTPs are 
olored in darker shades of grey,a

ording to in
reasing traÆ
 demand.� A Propagation Loss Matrix PLMi for ea
h 
andidate site Li de�nes thesignal losses (in dBm) from site Li to all RTPs.� An Angle of In
iden
e Matrix AIMi for ea
h 
andidate site Li de�nes theverti
al angles at whi
h the RTPs appear to site Li.2. Antenna Types� omnidire
tional antenna (OD):Parameters: Power, ranging from 26 dBm to 55 dBm in steps of 1 dBm.2



Figure 1: Data Map� large dire
tive antenna (LD):Parameters: Power, ranging from 26 dBm to 55 dBm. Azimuth, varyingin steps of 1Æ. Tilt, ranging form 0Æ to -15Æ in steps of 1Æ.� small dire
tive antenna (SD):Parameters: same as for large dire
tive antenna.All antenna types 
an handle a traÆ
 of up to 43 Erlang. Asso
iated with anantenna type are antenna diagrams : a verti
al diagram (VDIAG) for omnidire
-tional antennas and verti
al and horizontal diagram (HDIAG) for the dire
tiveones. These diagrams de�ne the relation between the radiant signal loss (indBm) and the radial deviation from the signal main axis, measured in degree.Furthermore ea
h antenna type has a spe
i�
 antenna gain (G) and a spe
i�
antenna loss (A), measured in dBm:Antenna Type G AOD 11.15 7.00LD 15.65 7.00SD 17.15 7.00Table 1: Antenna Gain and Antenna LossATij denotes the jth antenna at site Li. A

ordingly, Powerij , Gij , . . . denotethe respe
tive parameters of ATij , and (ui; vi) are the 
oordinates of site Li.The �eld strength Fij(x; y) of antenna ATij at re
eption test point r = (x; y) is
omputed a

ording to the following formula:3



Fij(x; y) = Powerij +Gij �Aij � PLMi[x; y℄� V DIAG[AIMi[x; y℄� T iltij ℄�HDIAG[ 180Æ� � atan2(y � vi; x� ui)�Azimuthij ℄ .VDIAG and HDIAG are the diagrams asso
iated with the antenna type of ATij .If ATij is omnidire
tional, we negle
t the HDIAG term and set T iltij to zero.atan2(x; y) is similar to ar
tan(x=y), ex
ept that the signs of both argumentsare used to determine the quadrant of the result.A 
on�gured antenna is a pair de�ning an antenna type and a 
omplete list ofparameter values for that antenna type, e.g. (LD, [Power = 50 dBm, Azimuth= 90Æ, Tilt = -5Æ℄). A 
on�gured site is a site 
arrying at least one 
on�guredantenna. A 
on�gured site 
an 
arry either one omnidire
tional antenna or atmost three dire
tive antennas. A solution for an APP is a list of 
on�guredsites. The 
ell Cij of an antenna ATij is the set of STPs s re
eiving the bestsignal (i.e. strongest �eld strength) from ATij , provided that the signal is abovethe signal quality threshold of s. The traÆ
 load of an antenna ATij is thesum of the traÆ
 demand of all TTPs 
ontained in the 
ell Cij of Bij . Anantenna with traÆ
 load above 43 Erlang is 
alled overloaded. The per
entageof handled traÆ
 demand of a solution is 
alled traÆ
 hold :TraÆ
Hold = 1TotalTraÆ
 XAT2AT min(TraÆ
Load(AT ); 43 Erlang);where TotalTraÆ
 is the summed traÆ
 demand of all TTPs and AT is the setof all antennas. The per
entage of lost traÆ
 demand is 
alled traÆ
 loss, i.e.TraÆ
Loss = 1 - TraÆ
Hold.3 Constraints and Obje
tivesA feasible solution has to ful�ll the following two 
onstraints:� TraÆ
 Constraint (TC): The traÆ
 load of an antenna is � 43 Erlang,� Cover Constraint (CC): Every STP re
eives at least one signal aboveits signal quality threshold.Note that the 
onstraints imply that all TTPs of a feasible solution are 
ontainedin a non-overloaded 
ell. Thus the traÆ
 hold of a feasible solution is 100%. Thenext step is the de�nition of one or more obje
tives. From the point of design andevaluation of solutions it is highly desirable to have only one obje
tive. But it isoften very diÆ
ult to 
ombine the di�erent \quality-dimensions" of a solutioninto one single obje
tive. So, we �rst introdu
e three \quality-dimensions" asobje
tives to evaluate solutions. For the evolutionary algorithm these obje
tiveswill be 
ombined into one 
ost fun
tion, see se
tion 4. The obje
tives are:� Site Cost:SC = number of used Sites� Interferen
e Level:IL = 1j S jXs2S XF2FsnHsmax(F � Sm; 0)4



where Fs is the set of �eld strengths of all antennas at STP s. Hs isthe handover set, 
onsisting of the 4 strongest signals at STP s. Sm is asensibility threshold, usually -99 dBm.� Cell Shape Fa
tor:SF = 1j Cells j XC2Cells boundary(C)parea(C)where boundary(C) is the number of boundary points of 
ell C, i.e. thenumber of s 2 C having a s0 2 S nC in their 8-neighborhood, and area(
)is the number of interior points of C, i.e. the number of non-boundarypoints of C. This measure is inspired by a ratio widely used in physi
s:the ratio between the square root of the surfa
e and the third root of thevolume of a body. This ratio is 
alled shape fa
tor. It is dimensionless,s
ale invariant, and rea
hes its minimum value for a ball.Site 
ost addresses the e
onomi
al, interferen
e level and 
ell shape fa
tor ad-dress te
hni
al aspe
ts of the APP. The intention of the interferen
e obje
tiveis to make the frequen
y assignment problem (FAP) as simple as possible. Theshape fa
tor obje
tive prefers geometri
ally well-formed 
ells, whi
h is highly de-sirable for several reasons, e.g. minimization of drop-out probability. Within theARNO proje
t, the obje
tive 
ell shape fa
tor has not been used. Instead therewas a \
onne
tivity 
onstraint" whi
h ensures that all 
ells are topologi
ally
onne
ted. But it turned out that this 
onstraint has several disadvantages:1. it is very diÆ
ult to ful�ll,2. it is very sensitive to small 
hanges in design parameters,3. 
onne
ted 
ells 
an still be very irregular.For these reasons we have repla
ed the 
onne
tivity 
onstraint by the shapefa
tor obje
tive, whi
h seems to avoid some or all of the above problems.4 Evolutionary Approa
hThe above problem is solved by an evolutionary algorithm 
onsisting of threephases:� Initialization Phase� Repair Phase� Optimization PhaseThis s
heme provides a 
exible base for the adaptation of the abstra
t meta-heuristi
 Evolutionary Strategy (ES) to the APP. A general introdu
tion intothe �eld of evolutionary sear
h 
an be found in [S
h95℄ and [AL97℄. The internalstru
ture of the three phases is as follows:5



1: Initialization PhaseINITIALIZE Network (guided by heuristi
 rules)2: Repair Phase (repairs violated 
onstraints)REPEATSELECT Repair OperatorAPPLY sele
ted Repair Operator on NetworkUNTIL Network is feasible OR Stop Condition3: Optimization Phase (optimizes feasible network)REPEATSELECT Climb OperatorAPPLY sele
ted Climb Operator on NetworkAPPLY Lo
al Repair on NetworkUNTIL Stop ConditionWe use two types of 
ost fun
tions:1. Hard Cost Fun
tion, measuring violation of 
onstraints in the repair phase,2. Soft Cost Fun
tion, measuring the 
ost of a feasible solution in the opti-mization phase.Our 
ost fun
tions are linear 
ombinations of the single 
ost or penalty terms.For example:HardCost = �1 � TraÆ
Loss + �2 �Un
overedSTP ;where �1 and �2 are weight fa
tors representing the relative importan
e of thesingle terms. Un
overedSTP denotes the number of un
overed STP. An examplefor a soft 
ost fun
tion is:SoftCost =  1 � SC +  2 � IL +  3 � SF4.1 Initial SolutionsIn order to get a reasonable initial solution we exploit the lo
al stru
ture arounda site. For this purpose we introdu
e the following notions:traÆ
 demand density (in area A):sum of traÆ
 demand in A divided by the area of A
andidate site density (in area A):number of 
andidate sites in A divided by the area of ADepending on these densities in the neighborhood of a site an initial pla
ementprobability for this site is 
omputed. Then a 
on�guration of antennas is pla
edat this site a

ording to the 
omputed probability. The user has di�erent 
hoi
es6



for the 
on�guration. Repeating this pro
edure for all sites generates an initialsolution.The formula for the pla
ement probability re
e
ts the lo
al stru
ture arounda site by balan
ing the lo
al traÆ
 demand density and the lo
al 
andidatesite density. The formula is split into two parts be
ause we have to deal withthe 
over 
onstraint as well. Usually the traÆ
 demand restri
ts the size ofa 
ell. But if the demand density drops below a 
riti
al value (��TD ), the 
ell
an be
ome so large (with regard only to the traÆ
 
onstraint) that the �eldstrength does not rea
h the servi
e threshold at the 
ell periphery. Hen
e inthis 
ase the pla
ement probability should depend on the maximal 
ell size ofa site and not on the lo
al traÆ
 demand.This approa
h leads to `good' initial solutions if the problem stru
ture is nottoo irregular (e.g. strongly varying densities). For a given 
andidate site Li let�TD = lo
al traÆ
 demand density [�TD ℄ = Erlang � m�2 ,�Li = lo
al 
andidate site density [�Li ℄ = m�2 ,Cmax = maximal traÆ
 
apa
ity [Cmax℄ = Erlang ,Amax = maximal 
ell area [Amax℄ = m2 .Cmax, the maximal traÆ
 
apa
ity of site Li, depends on the pla
ement poli
y.The pla
ement poli
y de�nes what 
on�guration will be pla
ed initially at asele
ted site. If an omnidire
tional antenna is pla
ed, then Cmax is 43 Erlang.If the poli
y de�nes to pla
e two or three dire
tive antennas, Cmax takes thevalues 86 and 129 Erlang, respe
tively. Amax, the maximal 
ell size of a site Li,is de�ned as the area where the �eld strength of an omnidire
tional antenna withmaximal power | pla
ed at site Li | is above the servi
e threshold. These arethe parameters we need in order to 
ompute the pla
ement probability. Amaxis 
omputed by the following steps:1. Pla
e an omnidire
tional antenna at site Li with maximal power.2. Let N be the number of STPs re
eiving a good signal from the pla
edantenna.3. Amax = N ��2mesh (�mesh = width of square mesh)Our formula for the pla
ement probability is given by:p = 8>><>>: min( 1Cmax � �TD�Li ; 1 ) , �TD � ��TD (
riti
al 
onstraint: traÆ
)min( 1Amax � 1�Li ; 1 ) , otherwise (
riti
al 
onstraint: 
over)where ��TD = Cmax=Amax.For the estimation of the parameters �TD and �Li we assume that the distribu-tions of 
andidate sites and traÆ
 demand are not too irregular. Thus we 
an7



use the ideal situation of a network of hexagon 
ells (see Figure 2) as orientationto derive our density estimators. There are a lot of other reasonable estimators,espe
ially if the `not too irregular' assumption fails. However, note that theinitial pla
ement probabilities need to be only approximately `
orre
t', be
ausewe are interested in an initial solution and not in a �nal one.

Figure 2: Hexagon NetworkWith regard to Figure 2 we use the following estimation pro
edures for thedensities �TD and �Li in the neighborhood of a 
andidate site Li:Lo
al Candidate Site Density1. Compute the distan
es from site Li to its 6 nearest 
andidate sites:d1; ::; d62. d = 16 6Xi=1 di3. Ahexagon = p32 � d 2 (area of hexagon)4. �Li = 1AhexagonThe following estimator of traÆ
 demand density �TD uses the notion of thebounding box of a set A � R2. It is a re
tangle� with sides parallel to the 
oordinate axes,� 
ontaining A,� with minimal area. 8



We use the bounding box, be
ause in our 
ontext not only the a

ura
y, butalso the 
omputational eÆ
ien
y of an estimator is important.Lo
al TraÆ
 Demand Density1. box = bounding box of the 6 nearest 
andidate sites2. ebox = Xt2T \ box e(t) (e(t) = traÆ
 demand at TTP t)3. Abox = area of box4. �TD = e boxAbox4.2 Repair PhaseAfter �nishing the initialization phase, the 
andidate solution is analyzed: if itviolates a 
onstraint, the design pro
ess enters the repair phase. The goal ofthe repair phase is to transform the 
andidate solution into a feasible one. Thetransformation is 
arried out by a number of heuristi
 operators or, for short,heuristi
s. The implemented heuristi
s are:� RepairTraÆ
: tries to introdu
e new antennas in order to absorb traÆ
overload of nearby 
ells,� RepairHole: tries to introdu
e new antennas in the neighborhood of
over holes,� De
reasePower: de
reases power of an antenna with traÆ
 overload stepby step until the overload vanishes or the minimal power is rea
hed,� In
reasePower: in
reases power of an antenna with traÆ
 load� 43 Er-lang step by step until the maximal traÆ
 load or the maximal power (55dBm) is rea
hed,� ChangeAzimuth: 
hanges the azimuth of an antenna by a random value,� ChangeTilt: 
hanges the tilt of an antenna by a random value,� DissipateTraÆ
: tries to redu
e traÆ
 over- and underload of all anten-nas using a dissipation algorithm (see below).The dissipation algorithm used in the DissipateTraÆ
-rule exe
utes the follow-ing pro
edure:1. Run through the list of antennas.2. If an antenna with power > 26 dBm has traÆ
 overloadthen de
rease its power by 1 dBm.3. Repeat until a run through the antenna list results in no 
hange.9



In many 
ases the e�e
t of this rule is that traÆ
 load peaks will dissipate overthe whole network until there is no more traÆ
 overload. This rule has provento be very su

essful in eliminating traÆ
 overload.A sele
tion operator 
hooses a heuristi
 operator from the above list, whi
his then applied to the network. Currently we use uniform sele
tion, i.e. ea
hheuristi
 is 
hosen with the same probability. The transformed network is onlya

epted if its hard 
ost is lower than or equal to the hard 
ost of the originalone. This pro
ess will be repeated until a feasible solution results { then thedesign pro
ess enters the optimization phase { or the termination 
riterion (see4.4) is rea
hed. In the latter 
ase the design pro
ess will be aborted.4.3 Optimization PhaseThe optimization phase has a similar stru
ture to the repair phase. The twomain di�eren
es are:� A soft 
ost fun
tion instead of a hard 
ost fun
tion guides the sear
h.� If a network operator destroys feasibility of a solution, then it is triedto repair this new 
andidate solution in order to maintain feasibility. Iffeasibility 
annot be restored, the new 
andidate solution will be dis
arded.For the transformation of networks there are additional heuristi
s available:� RemoveWeakAntenna: looks for an antenna with low traÆ
 load orsmall 
ell size and deletes it,� RemoveAntenna: deletes a random antenna,� RemoveWeakSite: deletes all antennas of a weak site, e.g. a site withlow traÆ
 load,� RemoveSite: deletes all antennas at a random site,� In
reaseCompa
tness: looks for a 
ell with high shape fa
tor and re-du
es power or in
rease tilt of the respe
tive antenna,� Redu
eIrregularities: introdu
e new antennas guided by the irregular-ity measure (see below) in order to redu
e regions with irregular geomet-ri
al and topologi
al 
ell stru
tures.� MinimizePower: redu
es power of all antennas by the same amount aslong as no new un
overed STPs emerge. Thus the 
ell stru
ture staysunaltered while the interferen
e level is redu
ed.One major problem in the optimization phase is the 
onstru
tion of networkswith a reasonable 
ell topology and geometry. Due to irregular path loss ma-tri
es (re
e
ting irregular geographi
al stru
tures) many 
ells tend to have anirregular shape or even get dis
onne
ted. Therefore we introdu
e a lo
al mea-sure for `geometri
al irregularity'. This measure guides the optimization pro
essin order to redu
e su
h irregularities. The lo
al irregularity Ir(x) { de�ned inanalogy to the 
ell shape fa
tor { in a square-shaped neighborhood of a STP xis 
omputed a

ording to the following formula:10



Ir(x) = 1(2r + 1)2 Xjjy�xjj1�r 18 S(y) (r = 0; 1; :::)S(y) measures the `point surfa
e' of y, i.e. S(y) is the number of dire
t neighborsof y belonging to another 
ell. We use 8-
onne
tivity, hen
e S(y) varies between0 and 8. Using the maximum norm jj � jj1, the parameter r determines the sizeof a square around the point x. For our networks we use r-values between 5and 10. Note that 0 � Ir(x) � 1 for all STPs x.The above formula is only one of many possibilities to implement an irregularitymeasure. Future resear
h will show whether there are more suitable variants.4.4 Termination RulesA general problem of heuristi
 sear
h pro
esses is the question of when to stopthem. We have not investigated a problem-spe
i�
 approa
h, but want to em-phasize that this is an interesting open question. Early dete
tion of low 
han
efor good improvements 
an drasti
ally redu
e 
omputation time by fo
ussing
omputational resour
es on promising approa
hes.The most 
ommon domain-independent termination rules are the Max Ruleand the Stagnation Rule. The Max Rule de�nes a priori an upper bound on thenumber of sear
h steps, whereas the Stagnation Rule observes the developmentof the solution 
ost and stops the pro
ess if over a prede�ned number of steps{ the lag interval { the de
rease of 
ost (measured in per
ent) drops below agiven 
riti
al threshold.Within the ARNO proje
t, we used mainly the stagnation rule, be
ause it real-izes a good 
ompromise between ease of implementation and adaptability to anindividual pro
ess evolution.It is noteworthy that the two parameters of the stagnation rule { the length ofthe lag interval and the 
riti
al threshold { are important 
ontrol parameters.In general, stri
ter parameter values (shorter lag interval, higher threshold) leadto redu
ed average 
omputation time, but also to lower average solution quality.So, depending on available resour
es and on performan
e requirements (both,average running time and solution quality), it is a Meta-Optimization problemto 
hoose the parameters of the stagnation rule. Based on several experiments,parameter values in the intervals listed below have proven to be useful:Parameter Value Intervallag interval 50 { 100 stepsthreshold per
entage 0 { 5 %Table 2: Parameter Values for Stagnation Rule
11



5 ResultsWithin the ARNO proje
t we have investigated eight real world problems. Thedata were provided by CNET 1. The �rst four networks { denoted by N1 0, . . . ,N4 0 { are green�eld design problems, i.e. all 
andidate sites are initially un-used. Networks N1 1, . . . , N4 1 are expansion design problems, i.e. an existingsolution should be expanded in order to meet new requirements, e.g. in
reasedtraÆ
 demand.We now present results for N1 0 and N3 0 in detail. N1 0 de�nes a highways
enario, N3 0 a medium size town s
enario. The dis
ussion of the expansiondesign problem is beyond the s
ope of this paper.Network Size Candidate Sites Total TraÆ
 (Erlang)N1 0 40 km � 170 km 250 3210.94N3 0 50 km � 46 km 568 2988.08Table 3: Network Data

Figure 3: Data Maps of Network N1 0 and Network N3 0Tables 4 and 5 display feasible solutions generated by our evolutionary sear
halgorithm for Network N1 0 and Network N3 0. They have been obtained withthe weights  1,  2, and  3 given in the tables. The weights have been set sothat one obje
tive got 10 times more weight than the other two. The weights�1 and �2 of the hard 
ost fun
tion used in the repair phase have been set to 1.1Fran
e Tele
om Resear
h and Development Center12



The number of generations to 
ompute these solutions lies between 1000 and5000.Best in. . . # Sites (25) IL SF OD LD SD  1  2  3# Sites 38 70.0 6.1 2 6 102 10 1 1IL 44 25.6 6.4 9 9 90 1 10 1SF 43 113.3 5.3 4 31 84 1 1 10Table 4: Best 
omputed solutions for Network1 0Best in. . . # Sites (23) IL SF OD LD SD  1  2  3# Sites 30 100.5 9.3 1 0 87 10 1 1IL 36 34.9 9.0 11 3 72 1 10 1SF 32 162.0 6.8 0 7 84 1 1 10Table 5: Best 
omputed solutions for Network3 01. The #Sites-
olumn 
ontains the number of used sites. The number inparentheses is a lower bound for the number of needed sites resulting fromthe total traÆ
 in a network.2. The IL- and the SF -
olumn display the interferen
e level (in dBm perSTP) and the average shape fa
tor. Optimal shape fa
tor in the eu
lideangeometry is 3.54, only rea
hed by a 
ir
le. The shape fa
tor of a hexagonis 3.72.3. The #OD-, LD- and #SD-
olumns 
ontain the number of used omnidi-re
tional, large dire
tive and small dire
tive antennas, respe
tively.Di�erent weights lead to di�erent solutions. There is a trade-o� between thedi�erent obje
tives. We are 
urrently trying to �nd a setting of the weights  1, 2, and  3 leading to solutions whi
h are a good 
ompromise between the threeobje
tives. This is 
urrently done in 
ooperation with a network operator.6 Con
lusionWe have introdu
ed an advan
ed model for the antenna pla
ement problem,whi
h addresses e
onomi
al and several te
hni
al aspe
ts. This leads to a 
on-strained and multi-obje
tive optimization problem, whi
h we have ta
kled withan evolutionary algorithm. The results obtained so far are en
ouraging. Get-ting still better results is not a problem of the evolutionary algorithm, but ofdeveloping the used model. We are 
urrently dis
ussing with network operatorshow to extend the model in order to make it still more realisti
.
13
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