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Motivation and Context: Learning Systems

The search for foundations of effective learning systems leads to three

main questions:

1. How should a learning system represent and process uncertain

information, or, what is the proper inductive logic?

2. What set of possible models should the system consider?

3. How to relate the explanatory power of a model to its complexity?
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How to represent and process Uncertainty?

• There are a lot of uncertainty calculi around today:

Dempster-Shafer theory, possibility theory, ranking theory, revision

theory, ...

• All of them make direct assumptions on the structure of uncertainty

values (e.g. one real number).

• But why should uncertainty not be measured by two (like in

DS-theory) or more real numbers, or by a complex number, or

matrices, or ...

⇒ Derive structure of uncertainty from axioms, instead of defining it.
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Why not just use Probability Theory:

the Ellsberg Paradox

• An urn contains 30 red balls and 60 other balls that are either black

or yellow.

• First alternative:

Gamble A: You receive $100 if you draw a red ball (p = 1
3

).

Gamble B: You receive $100 if you draw a black ball (p ∈ [0, 2
3
]).

• Second alternative:

Gamble C: You receive $100 if you draw a red or yellow ball (p ∈ [ 1
3
, 1]).

Gamble D: You receive $100 if you draw a black or yellow ball (p = 2
3

).

Jörg Zimmermann: Algebraic Uncertainty Theory 4



Why not just use Probability Theory:

the Ellsberg Paradox

Most people surveyed have the following preferences:

Gamble A > Gamble B and Gamble D > Gamble C.

But decision theory based on probability theory implies:

If Gamble A > Gamble B, then Gamble C > Gamble D.

• This contradiction indicates that some assumptions of decision

theory based on probability are violated.

• Point-probabilities can’t distinguish between randomness and

ignorance.

• The Ellsberg Paradox can be explained by “ambiguity aversion”,

which can’t be modeled by probability theory.
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Terminology and Notation

• The domain of confidence values C is partially ordered and has a

greatest (>>, “certain”) and a least (⊥⊥, “impossible”) element.

• A conditional confidence measure for a Boolean Algebra U and a

domain of confidence values C is a mapping:

Γ : U×U \ {⊥} → C.

Instead of Γ(A,B) we will write Γ(A|B) and say “the confidence

value of A given B (wrt. Γ)”.

• A confidence space is a triple (U,Γ, C).

• A set of confidence spaces sharing the same domain of confidence

values we will call a confidence universe.
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The Axiom System of R. T. Cox (1946)

1. C ⊆ R (i.e., confidence values are real numbers)

2. There is a function S: Γ(¬A) = S(Γ(A)).

3. There is a function F : Γ(AB) = F (Γ(A|B),Γ(B)).

4. S, F are twice differentiable.

Cox showed that confidence measures satisfying these axioms are

effectively probability measures (but his axioms are incomplete!).

Jörg Zimmermann: Algebraic Uncertainty Theory 7



The Axiom System of S. Arnborg and G. Sjödin (2001)

Arnborg and Sjödin extend the axiom system of Cox with the Refinability

Axiom (in total they need 16 axioms, but drop the real value assumption):

For every confidence space (U,Γ, C), it must be possible to introduce a

new subcase B of a proposition A with confidence value v given to

Γ(B|A),

and two other conditions regarding the extendability of a proposition

algebra.
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New Axiom System NC12: 3 Connective Axioms

(Not) If Γ1(A1) = Γ2(A2), then Γ1(¬A1) = Γ2(¬A2).

(And1) If Γ1(A1|B1) = Γ2(A2|B2) and Γ1(B1) = Γ2(B2),

then Γ1(A1B1) = Γ2(A2B2).

and axiom And2.
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New Axiom System NC12: 3 Infrastructure Axioms

(Extensibility) ∀ (U1,Γ1, C) and (U2,Γ2, C) there is a confidence space

(U3,Γ3, C), so that U3
∼= U1 ⊗U2, and for all A1, B1 ∈ U1, A2, B2 ∈ U2:

Γ3(A1 ⊗>2 |B1 ⊗B2) = Γ1(A1|B1),

Γ3(>1 ⊗A2 |B1 ⊗B2) = Γ2(A2|B2).

and two order-theoretic axioms, Order1 and Order2.
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Ring Theorem

The domain of confidence values C of a confidence universe satisfying the

axiom system NC12 can be embedded in a partially ordered commutative

ring (Ĉ, 0, 1,⊕,�,≤).

Let ·̂ : C → Ĉ be the embedding map, then the following holds:

⊥̂⊥ = 0, >̂> = 1,

∀v, w ∈ C : v ≤ w ⇔ v̂ ≤ ŵ.
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Ring Theorem

Furthermore, all confidence measures Γ of the confidence universe satisfy:

Γ̂(>) = 1

Γ̂(A ∨B) = Γ̂(A) ⊕ Γ̂(B) if AB = ⊥

Γ̂(AB) = Γ̂(A|B) � Γ̂(B)

These properties are the analogs to the Kolmogorov axioms and

conditionalization in probability theory, but now defined on a ring

structure.
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Decomposition of Uncertainty

  
0

1

Backbone

The greatest totally ordered subfield of a confidence ring is called

backbone (if it exists).

Backbone elements can be seen as numerical entities.

Jörg Zimmermann: Algebraic Uncertainty Theory 13



Decomposition Theorem

Given some weak additional assumption on confidence rings, every

element of the [0, 1]-interval can be decomposed into a numerical part

and an interaction part:

c = b+ r · a

• c is an arbitrary element of the [0, 1]-interval.

• b and r are elements of the backbone.

• a is an “interaction element”: 0 ≤ a ≤ 1 are the only bounds by

backbone elements.
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Decomposition of Uncertainty

  

c*

c
*

c

0

1

Backbone

c∗ = b, c∗ = b+ r
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Decomposition of Uncertainty

This decomposition result can be interpreted in the following way:

A general uncertainty value can be decomposed into a numerical interval

[b, b+ r] and an interaction component a.

If the interaction information can be neglected, this implies that

uncertainty in general can be represented by numerical intervals.
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Ellsberg Paradox revisited

Gamble A (red ball): p = 1
3

Gamble B (black ball): p = 2
3
α = 0 + 2

3
α, α ∈ [0, 1]

Decomposition: b = 0, r = 2
3
,a = α

Gamble C (red or yellow ball): p = 1
3

+ 2
3
β

Decomposition: b = 1
3
, r = 2

3
,a = β

Gamble D (black or yellow ball): p = 2
3

(= 2
3
α+ 2

3
(1− α))
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Ellsberg Paradox revisited

Utility of Gamble A: 1
3
U($100)

Utility of Gamble B: 2
3
α · U($100)  [0, 2

3
U($100)]

Utility of Gamble C: ( 1
3

+ 2
3
β) · U($100)  [ 1

3
U($100), U($100)]

Utility of Gamble D: 2
3
U($100)

Most people seem to assume worst case when faced with lack of

knowledge.
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Relations to Dempster-Shafer Theory:

Representation Theorem

For all Belief functions Bel (over finite proposition algebras) there is a

confidence measure Γ with:

Γ∗(A) = Bel(A)

Γ∗ returns the lower bound of the numerical interval defined by the

decomposition of a confidence value.

So, roughly one can say that Dempster-Shafer theory is confidence theory

without interaction information.
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Unifying Power of Confidence Theory

  

Probability Theory:

+ Coherent Conditionalization

-  Can't resolve Ellsberg Paradox

Dempster-Shafer Theory:

- No coherent Conditionalization

+ Resolution of Ellsberg Paradox

Confidence Theory:

+ Coherent Conditionalization

+ Resolution of Ellsberg Paradox
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Effective Learning Systems

• Learning in program space: Solomonoff induction

• In general not effective, but natural effective instances can be

defined by combining search in program space and proof space

(reduction of learnability to provability).

• Solomonoff induction doesn’t tell the learning system whether the

generation of the next bit has taken 1 second or 100 billion years.

This is the cause of its incomputability.

• If the learning system is enhanced by an internal clock, all effectively

generated bit sequences are effectively learnable.
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Conclusions

1. Algebraic Uncertainty Theory enables a unifying perspective on

reasoning under uncertainty by deriving, and not defining, the

structure of uncertainty values – it is not a YAUC (yet another

uncertainty theory).

2. Algebraic Uncertainty Theory can solve longstanding problems like

combining coherent conditionalization with a resolution of the

Ellsberg Paradox.

3. If the learning system is enhanced by an internal clock:

Effective universal induction is possible!

Jörg Zimmermann: Algebraic Uncertainty Theory 23


