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Abstract- In the paper we investigate stochastic local search
by Markov chain analysis in a high and a low dimensional
discrete space. In the n-dimensional spaceBn a function
called Jump is considered. The analysis shows that an al-
gorithm using a large neighborhood and never accepting
worse points performs much better than any local search al-
gorithm accepting worse points with a certain probability.
We also investigate functions in the spaceBn with many lo-
cal optima. Here we compare stochastic local search using
large neigborhoods with a local search using optimal tem-
perature schedules which depend on the state of the Markov
process.

1 Introduction

In order to understand the motivation behind our investigation
we shortly describe the general context. In our research we
have transformed evolutionary algorithms which recombine
strings to algorithms which use search distributions. For
a conceptual algorithm (Boltzmann distribution estimation
algorithm BEDA) we have proven convergence to the set of
global optima [MMO99]).

BEDA� STEP 0: Sett( 1. GenerateN � 0 points randomly.� STEP 1: SelectM � N points according to Boltzmann
selection. Estimate the distributionps(x; t) of the selected
set.� STEP 2: GenerateN new points according to the distri-
butionp(x; t+ 1) = ps(x; t). Sett( t+ 1.� STEP 3: If termination criteria are not met, go to STEP 1.

BEDA uses theBoltzmann distributionfor selecting promising
points. It is given by�T (x) = 1ZT exp�f(x)T (1)ZT is the usual partition function, defined by

Px exp� f(x)T .
It can easily be shown that the search distribution of the

selected pointsps(x; t) is a Boltzmann distribution if the to-
tal distributionp(x; t) is a Boltzmann distribution [MMO99].

From BEDA a practical algorithm has been derived, called the
Factorized Distribution Algorithm (FDA). It assumes that the
search distribution can be factored into a Bayesian networkps(x; t) = Qi p(xijpai). pai are called the parents ofxi. The
interested reader is referred to [MMO99, MM99]. The compu-
tational complexity of FDA depends on the size of the factorspa and the number of points required to approximate the Boltz-
mann distribution reasonably.

BEDA resembles simulated annealing. It uses a population of
points to estimate the Boltzmann distribution instead of a sin-
gle search point as simulated annealing does. It is well known
that simulated annealing approximates the Boltzmann distribu-
tion for a fixed temperature. But it needs a huge amount of tri-
als to reach equilibrium. Therfore using simulated annealing to
approximate the Boltzmann distribution is not practical. But it
might be that simulated annealing itself is an interesting alter-
native to the population search done by BEDA. From this per-
spective we decided to analyze simulated annealing in a clearly
defined mathematical context.

2 Simple Simulated Annealing

Simulated annealing is a probabilistic method proposed by Kir-
patrick et al. [KTV83]. The origin and the choice of the algo-
rithm lie in the physical annealing process. Here we just give
a short synopsis. The interested reader is referred to [AKvL97]
for a more detailed description. The basic elements of simulated
annealing (SA) are the following:

1. A finite set S.

2. A real-valued cost function c defined on S. LetS� � S
be the set of global minima of the function c.

3. For eachx 2 S, a setS(x) � S � fxg, called the set of
neighbors ofx.

4. For everyx, a collection of positive coefficientsqxy; y 2S(x), such that
Py2S(x) qxy = 1. It is assumed thaty 2S(x) if and only if x 2 S(y).

5. A non increasing functionT : N ! [0;1], called the
cooling schedule.N is the set of integers, andT (t) is
called the temperature at timet:

6. An initial statex(0) 2 S.
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Thus SA consists of a discrete-time inhomogeneous Markov
chainx(t), whose evolution is as follows. Choose a neighbory of x(t) at random; the probability that any particulary 2 S
is selected is equal toqxy. Oncey is chosen, the next statex(t+ 1) is determined as follows:� If f(y) � f(x), thenx(t+ 1) = y.� If f(y) > f(x) then x(t + 1) = y with probabilityexp (�(f(y)� f(x)=T (t))
The rationale behind the SA algorithm is best understood by
considering a homogeneous Markov chainxT (t) in which tem-
peratureT (t) is held at constant valueT . Let us assume that the
Markov chain is irreducible and aperiodic and thatqxy = qyx.
Then its invariant probability distribution is given by theBoltz-
mannor Gibbsdistribution (equation 1).

2.1 Convergence Analysis

Having defined the algorithm, we now address its performance.
The main questions are

1. Under which assumptions doesx(t) converge to the opti-
mal setS�?

2. How fast does the convergence toS� take place?

The first question has been more or less answered completely
[AKvL97]. Basically there are two convergence results. The
first theorem assumes that for eachT (t) the algorithm is run
until equilibrium is reached. Then forlimt!1 T (t) = 0
convergence toS� in probability is obviously obtained. This
convergence theorem is of limited values because there exists
no measures to discover when equilibrium is reached.

Definition: We say that state x communicates withS� at height
h if there exists a path inS (with each element of the path being
a neighbor of the preceding element) that starts atx and ends
at some elementS�, and such that the largest value off along
the path isf(x) + h. We setd� to be the smallest number that
everyx 2 S communicates withS� at heightd�, i.e.,d� is the
height of the deepest, non-global minimum.

A convergence theorem for inhomogeneous Markov chains
has been proven in [Haj88].

Theorem 1 (Hajek) The Simulated Annealing algorithm con-
verges if and only iflimt!1 T (t) = 0 and1Xt=1 exp� d�T (t) =1 (2)

There are not many cooling schedules which fulfil equation (2).
The most popular cooling schedules are of the form

T (t) = dlogt (3)

Here the theorem states that SA converges if and only ifd � d�.
The constantd� is a measure of the difficulty forx(t) to escape
from local minimum and go from a non optimal state toS�.

The practical relevance of this result for algorithms using sim-
ulated annealing is limited. Using a logarithmic cooling sched-
ule gives a slow convergence speed becauseT is approaching 0
very slow. We will investigate the speed of convergence for a
specific class of functions in the next section.

3 The Optimization Problem

In order to make comparison with our results from evolutionary
computation easier, we considermaximization instead ofmin-
imization. We investigate functions defined onS1 = Bn, i.e.,x 2 S1 is a binary string of sizen, andS2 = f1; : : : ; ng:f1(x; n; gap) := Jump(n; gap; jxj1) x 2 S1 (4)f2(i; n; gap) := Jump(n; gap; i) i 2 S2 (5)jxj1 is just the sum of 1-bits andJump is given by:

Jump(n; gap; i) := 8<: i i < n� gap2 � (n� gap� 1)� i n� gap � in i = n
(6)

The parametergap defines the number of steps one has to go
downhill in order to reach the unique maximum. It is iden-
tical to d� used in theorem 1. Ifgap = 0, f1 is the linear
functionOneMax andf2 is the identity. Bn can be viewed
as the set of vertices of ann-dimensional hypercube, whereasf1; : : : ; ng can be interpreted as points on a 1-dimensional
straight line. Hencef1 andf2 represent a high-dimensional and
a low-dimensional optimization problem.

We will investigate the computational complexity of simu-
lated annealing for a fixed temperature and neighborhoods of
different size. Our performance criterion will be the expected
number of trials to reach the optimum. This is called theex-
pected first passage timeE(PT ) – in the following abbreviated
by � – in Markov chain analysis. We first investigate stochastic
local search inS1 = Bn.

4 Markov Chain Analysis in Bn
Let M = (mij) be the transition matrix of a homogeneous
Markov chain withN states, labelled with1; : : : ; N . The ex-
pected first passage times�ij from statei to statej can be deter-
mined from a set of linear equations:�ii = 0 ; 1 � i � N (7)�ij = 1 + NXk=1mik�kj ; 1 � i; j � N; i 6= j (8)
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The right-hand side of equation (8) results fromunfolding the
Markov chain one step. In order to compute the expected first
passage time from state1 to stateN it is sufficient to consider
the vector of passage times~�N = (�1;N ; : : : ; �N�1;N )T . LetM̂ denote the reduced transition matrix resulting fromM by
deleting rowN and columnN . By 1N�1 we denote the vector
consisting ofN � 1 ones. Translating the above equations in
matrix notation and solving for~�N leads to:

Theorem 2 The vector of expected first passage times from
states1; : : : ; N�1 to stateN can be computed by the following
equation: ~�N = (I� M̂)�1 � 1N�1 (9)

Theorem 2 shows that the computation of passage times is es-
sentially a matrix inversion problem. The matrix(I � M̂)�1 is
called thefundamental matrix. Several other system character-
istics can be expressed as functions of the fundamental matrix
or its elements [Bha84, KS60].

A Markov chain hasneighborhood sizes if direct transitions
are only possible between states satisfyingji � jj � s. For the
special case ofs = 1 an analytical solution for the expected first
passage times is possible. In that case, the transition matrix has
the following form:0BBBBBB@ p01 p+1 0 0 : : : 0 0 0p�2 p02 p+2 0 : : : 0 0 00 p�3 p03 p+3 : : : 0 0 0: : : : : : :0 0 0 0 : : : p�N�1 p0N�1 p+N�10 0 0 0 : : : 0 p�N p0N

1CCCCCCA (10)

Let �i;N be abbreviated by�i. Using (7) and (8) we get the
following system of equations:�1 = 1 + p01�1 + p+1 �2�i = 1 + p�i �i�1 + p0i �i + p+i �i+1�N�1 = 1 + p�N�1�N�2 + p0N�1�N�1
The above system of equations can be rewritten into (note thatp�i + p0i + p+i = 1):(�i � �i�1)p�i = 1 + (�i+1 � �i)p+i 1 � i � N � 1 (11)

where the new variables�0 and�N are set to0. Defining�i =�i � �i�1, equation (11) leads to a recursion which is solvable
by induction:�i+1 = p�ip+i �i � 1p+i 1 � i � N � 1 (12)

Instead of an initial value we have the following constraint on
the�i’s: NXi=1 �i = �N � �0 = 0 (13)

A solution for recursion (12) and constraint (13) can be retrans-
lated into a solution for the�i’s. The result is a general formula
for the expected first passage times from statei to stateN for
Markov chains with neighborhood size 1:�i = N�1Xj=i 1p+j P �(j) jXk=1P �(k) 1 � i � N � 1 (14)

HereP �(i) denotes the probability of statei in the equilibrium
distribution [FHW79]:P �(i) = 1Z iYj=2 p+j�1p�j 1 � i � N (15)

andZ is a normalizing factor, called thepartition function:Z = NXi=1 iYj=2 p+j�1p�j (16)

Let us now consider the case of simulated annealing on a bi-
nary string of lengthn. There are2n states. Neighborhood is
defined by hamming distance, i.e., two strings are neighbors if
their hamming distance is less or equal to a givenh. This defines
a set of neighborhoods which we will callh-hamming neighbor-
hoods. A new search point is generated by sampling uniformly
the neighborhood of the current search point.

The Markov chain analysis of this setting is simplified by the
following state space abstraction: two stringsx1 andx2 are
considered equivalent ifjx1j1 = jx2j1, i.e., if they have the
same number of 1-bits. The decisive fact is now that the prob-
ability, that a string in equivalence classj becomes in one step
a string in equivalence classk does not depend on the specific
string in equivalence classj. Hence there are well-defined tran-
sition probabilities between string classes, resulting in a Markov
chain having the string classes as atomic states. If we start with
strings of lengthn, the abstract Markov chain hasn + 1 states
becausejxj1 ranges over0; : : : ; n. In order to apply the above
equations, we therefore setN = n+1. The neighborhood sizes
of the abstract Markov chain is equal toh, the maximal ham-
ming distance between neighbors in string space. Let� = 1=T
denote the inverse temperature. Then fors = 1 the transition
probabilities of the abstract Markov chain can be expressed as
follows:p�i = i� 1n exp (�� � jf(i� 1)� f(i� 2)j+) (17)p+i = n� i+ 1n exp (�� � jf(i� 1)� f(i)j+) (18)p0i = 1� p+i � p�i (19)
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Heref(�) denotes an arbitrary fitness function on the abstract
states, i.e.,f(�) can be represented as a compositionf(jxj1).jxj+ is an abbreviation formax (x; 0). Plugging these transition
probabilities into formula (15) for the equilibrium distribution
and the result into formula (14) yield

Theorem 3 Stochastic local search acting inBn with 1-
hamming neighborhoods, uniform sampling, inverse tempera-
ture�, and a fitness functionf(jxj1) has the following expected
first passage times from a stringx with jxj1 = i to the stringx� = (1; : : : ; 1) :�i = nXj=i exp (� � jf(j � 1)� f(j)j+)�n�1j�1� � (20)jXk=1� nk � 1� exp (� � (f(k)� f(j)))
In the derivation of formula (20) we used the identityjxj+ � j � xj+ = x to simplify the second exponential expres-
sion. This general formula will be applied to special cases.

Theorem 4 For � = 0 the expected first passage time�1 fromx = (0; : : : ; 0) to the unique optimumx� = (1; : : : ; 1) is given
by�1 � 2n.

Proof: This is the case of a random walk. The passage times
are independent from the fitness function. Applying formula
(20) yields:�i = nXj=i 1�n�1j�1� j�1Xk=0�nk� 1 � i � n (21)

From this formula we can get tight bounds on�1:2n � 1 � �1 � (2n � 1)(1 + 4n ) n � 1 (22)

These bounds determine the asymptotic growth of�1. The lower
bound results from the last addend in (21), i.e., forj = n,
and the upper bound can be derived by reordering the addends
in (21) and using the inequalityn�1Xj=0 1�n�1j � � 2 + 4(n� 3)(n� 1)(n� 2) (23)

For a random walk the expected first passage time to the global
optimum growsexponentiallyin n. Next we consider stochastic
hill climbing.

Theorem 5 For f1(�), gap = 0 and� = 1 the expected first
passage time�1 from x = (0; : : : ; 0) to the unique optimumx� = (1; : : : ; 1) is given by�1 = n nXj=1 1j (24)

Proof: The conditiongap = 0 implies thatf1(k) � f1(j) =k � j for all j; k. Thus, equation (20) instantiates in a first step
to: �i = nXj=i 1�n�1j�1� jXk=1� nk � 1�exp(� � (k � j))= nXj=i 1�n�1j�1�"� nj � 1�+j�1Xk=1� nk � 1� exp (�� � (j � k))#
Now we have for allj:lim�!1 j�1Xk=1� nk � 1� exp (�� � (j � k)) = 0
and therefore�i = nXj=i � nj�1��n�1j�1� = n n�i+1Xj=1 1j� n ln (n� i+ 1)
Finally for i = 1 we get:�1 = n nXj=1 1j � n lnn
The above theorems are valid for neighborhood sizes = 1. The
next conjecture deals with arbitrary neighborhood sizes. The
approximate analysis is valid for� =1 andgap = 0.

Conjecture: For f1(�), gap = 0, � = 1 and neighborhood
sizes the expected first passage time�1 to move from the initial
pointx = (0; : : : ; 0) to the unique optimumx� = (1; : : : ; 1) is
approximately given by�1 � �ns� �ns��1 +�n� ss ��1 + � � �+�2ss ��1 + 1!

(25)

We assume thatn is an integer multiple ofs.
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We derive the conjecture by the following line of thought: First
considers = 1. We use the fact that the expected time till the
occurrence of an event with probabilityp in an independent se-
quence of trials is1p . Starting fromx = (0; : : : ; 0), the prob-
ability is 1 to get one bit correct. If one bit is correct, then the
probability is1� 1=n to get a second bit correct, etc. Therefore
we obtain: �1 = nn + nn� 1 + � � �+ n1
This is an intuitive derivation of Theorem 5. We next investigates = 2. We assume that only transitions from 0 to 2 to 4, etc.,
are made. Here the transition probability from state 0 to state
2 is 1, from state 2 to state 4 is

�n�22 �=�n2�. There is only one
transition fromn� 2 bits ton bits. The probability is given by�n2��1. Summing the inverse from these terms gives the conjec-
ture. Similar approximations we do for arbitrarys.
5 Results forJump
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Figure 1. Expected first passage timePT versus� for gap = 0; 1; 4.

We first discuss the casen = 16 for neighborhood sizes = 1. In
Figure 1 the expected first passage time�1 for the string model
is shown for three different gap sizes. The following behavior
can be observed: all curves start with the same value for� = 0.
This is not surprising, it is just the random walk. There are three
types of curves. Forgap = 0 the expected first passage time�
decreases from� = 0 till � = 1. In this case only improve-
ments should be accepted. Forgap = 1 there exists an optimal
inverse temperature�opt in (0;1). � decreases from� = 0 till�opt and then increases again. Forgap = 4 � increases with�.
Here random walk(� = 0) is the best strategy.

This result can be generally observed. If the gap is large com-
pared to the size of the problem, random walk is the best. If
the gap is small then� = 1 is the best parameter. For gaps of
medium size there exists an optimal parameter�opt.

We now investigate the scaling for two different gap values.
We have approximately determined the optimal�, which gives
the smallest� . For the computation we have used equation (9).
The results are displayed in Table 1.

n g �opt � �̂gap
8 1 0.8 208.8 71.2

3 0.0 312.0 170.6
16 1 1.8 1925.7 774.3

3 0.2 61913.1 4975.5
24 1 2.3 6824.8 2872.5

3 0.9 1.95E6 205697.4
32 1 2.6 16575.0 6893.4

3 1.4 1.95E7 2.91E6
64 1 3.3 137909.3 55526.6

3 2.2 3.68E9 5.13E8
96 1 3.8 471361.5 205983.0

3 2.6 7.12E10 8.63E9
128 1 4.1 1.12E6 494307.6

3 2.9 5.67E11 6.71E10

Table 1
Problem sizen with two gapsg; �̂gap from equation (26).

We have not been able to derive a scaling law from these
numbers. In order to obtain a conjecture, we make a simplified
analysis.

Theorem 6 For inverse temperature�, the expected first pas-
sage time�gap to cross a gap of sizeg can be lower bounded
by �gap � �̂gap = exp (� � g) ng+1(g + 1)! (26)

Proof: Let us assume that the gap is crossed and the optimum is
reached in one sweep. The probabilityp̂gap of this event can be
computed by multiplying the one step probabilities. We obtainp̂gap = exp (�� � g)(g + 1)!ng+1
The resulting passage time is�̂gap = p̂�1gap.

In Table 1 this estimate is compared with exact computations.
The estimate shows a comparable scaling behavior.

5.1 Performance for larger neighborhoods

Our analysis leads to a surprising simple conclusion, which we
state as an empirical law:

Empirical Law: For Jump in the spaceBn, the expected first
passage time to the global optimum is minimal if the size of the
neighborhood is equal togap + 1 and the stochastic algorithm
does not accept worse points.

With s = gap + 1 the algorithm directly jumps from the local
maximum to the global maximum. We have not been able to
analytically prove this conjecture. Table 2 displays some nu-
merical values fors = gap+ 1 and� = 10.
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n g � g � g �
8 1 47.6 2 96.7 3 164.6

16 1 191.0 2 718.6 3 2538.5
24 1 430.0 2 2379.1 3 13026.6
32 1 764.6 2 5590.5 3 41633.0
64 1 3059.4 2 44202.2 3 680863.5
96 1 6885.1 2 148674.6 3 3.4E6

128 1 12243.1 2 351894.1 3 1.1E7

Table 2� for s = g + 1 and� = 10.s n � n � n �
1 32 129.9 64 303.7 128 696.1
2 32 715.7 64 2851.5 128 11383.0
3 32 5587.5 64 44169.6 128 351394.0
4 32 41579.5 64 680146.6 128 1.1E7
5 32 242903.0 64 8.3E6 128 2.7E8

Table 3� for gap = 0, � =1.

A comparison between Tables 1 and 2 shows that the large
neighborhoods = g + 1 outperforms the small neighborhoods = 1 by order of magnitudes. It is fairly obvious that a large
neighborhood smoothes a rugged landscape. All local minima
which are less thans away from the next local maxima are
jumped over. The algorithm will find the optimum if there is
a transition path with long jumps to one of the global optima.
Along this path the function values do not decrease. Therefore
the numerical results forgap = 0, gap = 1, etc., are identical
as long as the neighborhood size is large enough (s � gap+1).

In table 3 we investigate the dependency of� on the neigh-
borhood sizes. Equation (25) can be used as a guidance for an
approximate scaling law. We obtained the following approxima-
tions:

Empirical Law: For � = 1 the algorithm scales as� �c(s)ns. The numerical fits are as follows:� � n lnn s = 1� � 0:75n2 s = 2� � 0:16n3 s = 3� � 0:04n4 s = 4� � 0:007n5 s = 5
The scaling law shows that the expected first passage times in-
crease polynomial inn. The coefficientc(s) decreases with in-
creasings, because we need less steps to reach the optimum.

We now analyse stochastic local search in one dimension.

6 Markov Chain Analysis in S2
We start the discussion with two Theorems.

Theorem 7 For � = 0 the expected first passage time�1 fromx = 1 to x = n is given by�1 = n(n� 1) (27)

Proof: We apply equation (14). We havep+j = p�j = 1=2:
Therefore we obtainP �(i) = 1=N andZ = N . In S2 we haveN = n states. Using equation (14) gives the conjecture.

Hence in case of a random walk the expected first passage
time to the global optimum growsquadraticallyin n. The next
theorem is proven similarly.

Theorem 8 For f2 with gap = 0 and� = 1 the expected first
passage time fromx = 1 to the unique optimumx� = n is given
by�1 = 2(n� 1).
These two results have to be interpreted properly. SpaceS2
has onlyn states. This means that optimization by complete
enumeration takesn steps. Any kind of biased stochastic lo-
cal search with two neighbors (s = 1) needs betweenn2 and2n trials. This is obviously worse than complete enumeration.
Stochastic local search with small neigborhoods is extremely in-
efficient inS2.
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Figure 2. Expected first passage timePT versus neighborhood sizes
(n = 32, 64, 128, 256,gap = 0,� =1).

In figure 2 the expected first passage time�1 is shown for var-
ious neighborhood sizes. For each problem sizen there exists
an optimal neighborhood size. Forn = 256 the optimal neigh-
borhood sizes is 22 with an expected passage time�1 = 85:73.
This is a substantial reduction compared to neighborhood sizes = 1. Fors = 1 we have�1 = 510. Whereas forBn the opti-
mal neighborhood size iss = 1 for � =1, we have an optimal
neighborhood sizesopt > 1 for S2. These results confirm our
hypothesis: the size of the neighborhood is extremely important
for stochastic local search.

7 Temperature Schedules

Most of the suggested annealing schedules have been from the
apriori type. They are computed before the run starts and not
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adjusted to the actual behavior of the system. Examples are�(t) = a exp (bt)�(t) = a(t+ b)�(t) = a ln (t+ b)
The third schedule is used in Theorem 1. All schedules increase� monotonically. Such a strategy is obviously bad for functions
where a valley has to be crossed after a large number of trials.

It is very difficult to theoretically analyze� for all possible
schedules for an arbitrary function. We first analyze the artificial
functionJump, because for this function an optimal schedule
can be computed. This schedule is not of the apriori type. The
schedule depends on the state of the Markov process.

Theorem 9 For Jump(n; gap; jxj1) with neighborhood sizes = 1, the optimal state dependent schedule is�(i) = 1 i < n� gap� 1�(i) = 0 n� gap� 1 � i < n� 1�(i) = 1 i = n� 1
Proof: For i < n� gap� 1 the probability to get to statei+ 1
is maximized for�(i) =1. At statei = n� gap� 1 we have
a local optimum. The fitness values for the neighboring statesi� 1 andi + 1 are equal. Therefore the acceptance probability
for both states is the same. In order to leave the statei as soon
as possible� should be zero. At statei = n � gap we have to
go down further. Any� > 0 would prefer to go back. Therefore� = 0 is optimal.

This state dependent schedule is obviously better than any
apriori schedule. The optimal state dependent schedule is not
monotonic!

In table 4 the first passage time� is shown for the optimal
schedule. n g � g �

8 1 114 3 265
16 1 771 3 7440
24 1 2478 3 58152
32 1 5745 3 251290
64 1 44644 3 8.44E6
96 1 149438 3 6.53E7

128 1 352887 3 2.78E8

Table 4� for optimal schedule.

Comparing the results of table 4 with tables 1 and 2, we see
that the optimal schedule reduces� substantially compared to
any fixed�. But for this function local search with optimal
neighborhood performs still better.

We have not been able to find anapriori temperature schedule
which finds the optimum in less than107 trials for n � 24.

The functionJump is a worst case for any monotonic apriori
schedule.� has to be very small nearby the optimum. But any
monotonic schedule has the largest values for� at the end of the
search. This makes it very unlikely that the local search crosses
the valley.

8 Numerical results from simulations

The functionJump is very artificial. We now discuss stochastic
local search for functions with many local optima.f1 := 1; 2; 1; 0; 1; 2; 3; 2; 1; 2; 3; 4; 3; 2; 3; 4; 5; 4; 3;4; 5; 6; 5; 4; 7f2 := 1; 2; 1; 0; 1; 2; 3; 2; 1; 2; 3; 4; 3; 2; 3; 4; 5; 4; 3;4; 5; 6; 5; 4; 5; 6; 7f3 := 1; 2; 1; 0; 2; 2; 3; 2; 3; 2; 3; 4; 4; 2; 3; 4; 5; 4; 3;4; 6; 6; 5; 4; 7; 6; 8

The optimal state dependent schedule forf1 andf2 can easily
be derived. It is given by�(t) =1 if one has to go uphill, or if
the search is at the bottom of a valley. It is given by�(t) = 0 if
the local search is at a local optimum, or has to go downhill.

The optimal schedule forf3 is difficult to determine. Let us
consider statejxj1 = 24. Its fitness value is 7. The fitness values
of the neighboring states are 4 and 6. In order to go with higher
probability to the state with fitness value 6, we should use some
value� > 0 instead of� = 0. In sched:2we have set�(24) = 2
instead of 0.func meth: � stdf1 sched: 14400 14400f1 N = 4 17700 15400f2 sched: 1300 1240f2 N = 5 79278 80300f3 sched:1 279600 2600000f3 sched:2 46341 40000f3 N = 4 20690 18000

Table 5� for different schedules and neighborhoods.

Table 5 displays the results of simulations. The entrancesched: means that one of the above described state dependent
annealing schedules have been used.std denotes the standard
deviation.

For functionf1 local search with optimal neighborhood per-
forms as good as local search with optimal schedule. For func-
tion f2 local search with optimal schedule performs far better
than optimal neighborhood search. For functionf3 the optimal
neighborhoodsearch performs better than the search with sched-
ulessched:1 andsched:2. Note the large difference in the per-
formance ofsched:1 andsched:2. The interpretation of these
results is difficult. Small changes in the fitness function (seef2
andf3) may cause a huge difference in the search performance.

For all three functions the optimal state dependent schedule is
not monotonic. It mainly switches between� = 1 and� = 0.
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We have not been able to solve the optimization problem by any
apriori schedule in less than107 steps. This observation shows
thatany constant or monotonic increasing schedule is far away
from an optimal schedule.

9 The Problem of Simulated Annealing

Our research indicates the weak point of simulated annealing
for fast optimization. SA does not try to develop a model of the
function to be optimized. It just performs a biased random walk.
The random walk does not have any preferred direction. The
bias is given by an external parameter, the temperature. There
is no feed back between the structure of the landscape and the
temperature.

All landscapes considered have a certain structure. The
heights of the hills are increasing if the number of bits on in-
creases. Our population algorithm FDA detects and exploits this
information. By generating many points in a certain area, it is
possible to select the better ones. The better ones do have on the
average more bits on than the whole of the population. In the
next step we generate new points in the vicinity of the selected
points. This means we are moving into the right direction. All
functions considered have been easily solved by our simplest
population algorithm UMDA [MM00].

Simulated annealing uses purely local information. It even is
memory less. It does blind moves, the acceptance of the moves
based only on the temperature. This might be a good technique
to approximate important distributions in physics. It is obvi-
ously not a good technique for fast optimization.

10 Summary and Discussion

Much of the folklore of simulated annealing is based on argu-
ments and techniques derived from statistical physics. We have
tried to mathematically analyze tractable cases. The results all
point into one direction: variation of the temperature has not
a large influence on the computational efficiency. Much more
critical is the size of the neighborhood.

We have shown that in the one dimensional spaceS2 any lo-
cal search with a small neighborhood performs even worse than
enumeration. In the spaceS1 = Bn only a state dependent
optimal schedule performs as good as local search with large
neighborhoods. We have shown for the spaceBn thatany apri-
ori annealing scheduleperforms much worse than both of the
mentioned methods.

To make the analysis simple we studied local search algo-
rithms where the neighborhood is large enough so that there
exist an uphill path to the optimum. Of course one can argue
that the size of a good neighborhood is not known. But the size
can be determined adaptively, starting with neighborhood size 1.
The neighborhood size is increased if there are too many trials
which are unsuccessful. This technique has just been discov-
ered in operations research. Its name isvariable neighborhood
search[MH97].

Another method to introduce a variable neighborhood is to
use a population of search points instead of a single point. If
the new search points are generated by a probability distribu-

tion, than we have aprobabilistic neighborhood.The neigh-
borhood is dynamic. A new configuration from the neighbor-
hood is not chosen uniformly distributed, but by a problem spe-
cific probability distribution. This probability distribution gen-
erates more often points nearby the average, and more seldom
far away from the average. This is done in our FDA algorithm
[MM99, MMO99].

The results of this paper confirm what has already been found
empirically: the neighborhood is much more important than
the annealing schedule [Fox95]. If the neighborhood is cho-
sen properly, then there is no need to introduce a complicated
annealing schedule. The question raised in [HS89]: To cool or
not to cool has the answer: Not to cool.

Bibliography

[AKvL97] E.H. Aarts, H.M. Korst, and P.J. van Laarhoven.
Simulated annealing. In E. Aarts and J.K. Lenstra,
editors,Local Search in Combinatorial Optimiza-
tion, pages 121–136, Chichester, 1997. Wiley.

[Bha84] U. N. Bhat. Elements of Applied Stochastic Pro-
cesses. Wiley, New York, 1984.

[FHW79] F.-J. Fritz, B. Huppert, and W. Willems.Stochastis-
che Matrizen. Springer, Berlin, 1979.

[Fox95] B. L. Fox. Faster simulated annealing.Siam J. Op-
timization, 5:488–505, 1995.

[Haj88] B. Hajek. Cooling schedules for optimal annealing.
Math. Oper. Res., 13/2:311–329, 1988.

[HS89] B. Hajek and G. Sasaki. Simulated annealing – to
cool or not.Syst. Contr. Lett., 12:443–447, 1989.

[KS60] J. G. Kemeny and J. N. Snell.Finite Markov Chains.
Van Nostrand, Princeton, N.J., 1960.

[KTV83] S. Kirpatrick, G. Toulouse, and M.P. Vecchi. Opti-
mization by simulated annealing.Science, 220:671–
680, 1983.

[MH97] N. Mladenovic and P. Hansen. Variable neighbor-
hood search.Computers Oper. Res., 24:1097–1100,
1997.

[MM99] H. Mühlenbein and Th. Mahnig. FDA – a scalable
evolutionary algorithm for the optimization of addi-
tively decomposed functions.Evolutionary Compu-
tation, 7(4):353–376, 1999.

[MMO99] H. Mühlenbein, Th. Mahnig, and A. Rodriguez
Ochoa. Schemata, distributions and graphical mod-
els in evolutionary optimization.Journal of Heuris-
tics, 5:215–247, 1999.

[MM00] H. Mühlenbein and Th. Mahnig. Evolutionary Al-
gorithms: From Recombination to Search Distribu-
tions. InTheoretical Aspects of Evolutionary Com-
puting, L. Kallel, B. Naudts, A. Rogers (eds.), Nat-
ural Computing, Springer, New York, pp. 137-176,
2000.

8


