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Abstract- In the paper we investigate stochastic local search From BEDA a practical algorithm has been derived, called the
by Markov chain analysis in a high and a low dimensional Factorized Distribution Algorithm (FDA). It assumes that the
discrete space. In the n-dimensional spac&” a function search distribution can be factored into a Bayesian network
called Jump is considered. The analysis shows that an al-p®(z,t) = [[; p(z;|pa;). pa; are called the parents af. The
gorithm using a large neighborhood and never accepting interested reader is referred to [MMO99, MM99]. The compu-
worse points performs much better than any local search al- tational complexity of FDA depends on the size of the factors
gorithm accepting worse points with a certain probability. pa and the number of points required to approximate the Boltz-
We also investigate functions in the spac&™ with many lo- mann distribution reasonably.

cal optima. Here we compare stochastic local search using BEDA resembles simulated annealing. It uses a population of
large neigborhoods with a local search using optimal tem- points to estimate the Boltzmann distribution instead of a sin-
perature schedules which depend on the state of the Markov gle search point as simulated annealing does. It is well known

process. that simulated annealing approximates the Boltzmann distribu-
tion for a fixed temperature. But it needs a huge amount of tri-
1 Introduction als to reach equilibrium. Therfore using simulated annealing to

approximate the Boltzmann distribution is not practical. But it

In order to understand the motivation behind our investigationight be that simulated annealing itself is an interesting alter-
we shortly describe the general context. In our research wative to the population search done by BEDA. From this per-
have transformed evolutionary algorithms which recombirspective we decided to analyze simulated annealing in a clearly
strings to algorithms which use search distributions. Fdefined mathematical context.
a conceptual algorithm (Boltzmann distribution estimation
algorithm BEDA) we have proven convergence to the set QfSimpIe Simulated Annealing
global optima [MMO99]).
Simulated annealing is a probabilistic method proposed by Kir-
patrick et al. [KTV83]. The origin and the choice of the algo-

BEDA rithm lie in the physical annealing process. Here we just give
e STEP 0: Sett < 1. GenerateV >> 0 points randomly. & short synopsis. The interested reader is referred to [AKvL97]

) . for a more detailed description. The basic elements of simulated

selection. Estimate the distributipf(z, t) of the selected

set. 1. Afinite set S.
e STEP 2: GenerateV new points according to the distri- 2. A real-valued cost function ¢ defined on S. It ¢ S
butionp(z,t + 1) = p*(z,t). Sett <=t + 1. be the set of global minima of the function c.
e STEP 3:If termination criteria are notmet, goto STEP 1. 3 Foreach: € S, a setS(z) C S — {z}, called the set of
neighbors ofc.
BEDA uses theBoltzmann distributiorfor selecting promising 4. For everyr, a collection of positive coefficients.,, y €
points. Itis given by S(z), suchthay>, g, day = 1. Itis assumed that €
1 z S(x) ifand only if z € S(y).
wr(e) = - exp 1D )
T 5. A non increasing functio' : N — [0, o], called the

Zr is the usual partition function, defined By, exp — ). cooling schedule.V is the set of integers, arii(?) is
It can easily be shown that the search distribution of the  called the temperature at time
selected pointg*(z,?) is a Boltzmann distribution if the to- ¢ A i
S ' P . Aninitial statez(0) € S.
tal distributionp(z,t) is a Boltzmann distribution [MMQ99]. ©)



Thus SA consists of a discrete-time inhomogeneous Markov

chainz(t), whose evolution is as follows. Choose a neighbor d
y of z(t) at random; the probability that any particulare S T@) =7~ 3)
is selected is equal tg,,. Oncey is chosen, the next state g
z(t + 1) is determined as follows: Here the theorem states that SA converges if and omlyifd*.

The constand* is a measure of the difficulty far(¢) to escape
from local minimum and go from a non optimal stateSta
o If f(y) < f(x), thenz(t +1) =y. The practical relevance of this result for algorithms using sim-
. ... ulated annealing is limited. Using a logarithmic cooling sched-
o It f(y) > f(z) thena(t + 1) = y with probability o tives a slow convergence speed becAuiseapproaching 0
exp (=(f(y) = f(2)/T (1) very slow. We will investigate the speed of convergence for a
specific class of functions in the next section.
The rationale behind the SA algorithm is best understood by
considering a homogeneous Markov chaif(t) in which tem- 3 The Optimization Problem
peraturel'(¢) is held at constant valuE. Let us assume that the
Markov chain is irreducible and aperiodic and thg§ = ¢,.. In order to make comparison with our results from evolutionary
Then its invariant probability distribution is given by tBeltz- computation easier, we consideaximization instead ofmin-

mannor Gibbsdistribution (equation 1). imization. We investigate functions defined ¢h = B", i.e.,
x € S is a binary string of size, andS, = {1,... ,n}:
2.1 Convergence Analysis
Having defined the algorithm, we now address its performance. fi(z,n,gap) = Jumgn,gap, |x|;) x €S (4)
The main questions are f2(i,n,gap) = Jumgn, gap, i) i €Sy (5)
1. Under which assumptions doe&) converge to the opti- |z|1 is just the sum of 1-bits andump is given by:
mal setS*?
2. How fast does the convergencestotake place? i i <n-—gap
Jumpn, gap,i) =< 2x(n—gap—1)—i n—gap<i
The first question has been more or less answered completely n i=n
[AKVL97]. Basically there are two convergence results. The (6)
first theorem assumes that for edEli) the algorithm is run _
until equilibrium is reached. Then fdim, .. T(t) = 0 The parametegap defines the number of steps one has to go

convergence t&* in probability is obviously obtained. Thisdownhill in order to reach the unique maximum. It is iden-
convergence theorem is of limited values because there exii&t8l to d* used in theorem 1. Iap = 0, fi is the linear

no measures to discover when equilibrium is reached. function OneMaz and f» is the identity. B" can be viewed
as the set of vertices of andimensional hypercube, whereas
Definition: We say that state x communicates withat height {1,...,n} can be interpreted as points on a 1-dimensional

h if there exists a path i (with each element of the path beingstraight line. Hencgf, and f» represent a high-dimensional and
a neighbor of the preceding element) that startsr@nd ends @ low-dimensional optimization problem. _ _
at some e|emerﬂ*, and such that the |argest value ﬁfajong We will |nV€St|gate the Computatlonal CompIeXIty of simu-

the path isf(z) + h. We setl* to be the smallest number thatiated annealing for a fixed temperature and neighborhoods of
everyz € S communicates witl§* at heightd*, i.e.,d* is the different size. Our performance criterion will be the expected

height of the deepest, non-global minimum. number of trials to reach the optimum. This is called éxe
pected first passage tinte( PT") — in the following abbreviated
A convergence theorem for inhomogeneous Markov chaiB¥ 7 — in Markov chain analysis. We first investigate stochastic
has been proven in [Haj88]. local search irb; = B".

4 Markov Chain Analysis in B™
Theorem 1 (Hajek) The Simulated Annealing algorithm con-

verges if and only ifim;_,, T'(t) = 0 and Let M = (m;;) be the transition matrix of a homogeneous
Markov chain withV states, labelled with,... ,N. The ex-
= d* pected first passage times from state to statej can be deter-
Z exp ——— = 00 2 : . .
P T(t) mined from a set of linear equations:
There are not many cooling schedules which fulfil equation (2). i = 0,1<i<N (7)
The most popular cooling schedules are of the form N
T o= 14> mam;, 1<L,j<N,i#j (8)
k=1



The right-hand side of equation (8) results framfoldingthe Instead of an initial value we have the following constraint on
Markov chain one step. In order to compute the expected fithe §;’s:
passage time from staleto statelV it is sufficient to consider

the vector of passage times = (7, ,,...,7,_, ). Let N
M denote the reduced transition matrix resulting frivi by b=, -10=0 (13)
deleting rowN and columnN. By 1, _, we denote the vector i=1

consisting ofV — 1 ones. Translating the above equations iR soytion for recursion (12) and constraint (13) can be retrans-
matrix notation and solving fof,, leads to: lated into a solution for the;’s. The result is a general formula
for the expected first passage times from siaie state NV for

Theorem 2 The vector of expected first passage times froMarkOV chains with neighborhood size 1.

statesl, ... , N —1to state/V can be computed by the following

equation: Ny J
=3 — S P'k) 1<i<N-1 (14)
]Z:: P P*(5) ;

- _ o\ —1
=0-Mmt-1, ©) Here P* (i) denotes the probability of stateén the equilibrium

distribution [FHW79]:
Theorem 2 shows that the computation of passage times is es-

sentially a matrix inversion problem. The mat(k— M)~ is 1P .

called thefundamental matrix Several other system character- P(i) = 7 H p—.‘ 1<i<N (15)
istics can be expressed as functions of the fundamental matrix j=2 =J

or its elements [Bha84, KS60]. andZ is a normalizing factor, called thgartition function

A Markov chain hasieighborhood size if direct transitions
are only possible between states satisfyfing j| < s. For the N i
special case of = 1 an analytical solution for the expected first 7 - Z H Pj1 (16)
passage times is possible. In that case, the transition matrix has
the following form:

i=1 j=2 b;

Let us now consider the case of simulated annealing on a bi-
nary string of lengthn. There are2™ states. Neighborhood is

pl pf 0 0 ... 0 0 0 defined by hamming distance, i.e., two strings are neighbors if
pr M py 0 ... 0 0 0 their hamming distance is less or equal to a gikefihis defines
0 py P} p3 ... O 0 0 (10) @setof neighborhoods which we will cahamming neighbor-

. . - hoods A new search point is generated by sampling uniformly
0o 0 0 0 ... p,, P, Pf, the neighborhood of the current search point.
o 0 o0 0 ... 0 py D% The Markov chain analysis of this setting is simplified by the

following state space abstractiortwo stringsz; and z, are
considered equivalent ifc1|; = |z2]1, i.e., if they have the
same number of 1-bits. The decisive fact is now that the prob-
ability, that a string in equivalence clagdbecomes in one step

a string in equivalence clagsdoes not depend on the specific

Let r;,, be abbreviated by;. Using (7) and (8) we get the
following system of equations:

_ 0 +
no= 1+ pl_ﬁ th Tz N string in equivalence clags Hence there are well-defined tran-
i = l4p i +piTi + P Tin sition probabilities between string classes, resulting in a Markov
Tor = l4p. T, +0°_ Tol, chain having the string classes as atomic states. If we start with
strings of lengths, the abstract Markov chain has+ 1 states
The above system of equations can be rewritten into (note tbébaus¢a:|1 ranges ovel, ... ,n. In order to apply the above
pi +p) +p =1) equations, we therefore st = n+ 1. The neighborhood size

of the abstract Markov chain is equal 9 the maximal ham-
ming distance between neighbors in string spacesLetl/T
denote the inverse temperature. Thendor 1 the transition
probabilities of the abstract Markov chain can be expressed as

(i —Tic)p; =1+ (Tig1 —m)pf 1<i<N-1 (11)

where the new variables andr, are set td). Definingd; =

T; — T;—1, equation (11) leads to a recursion which is solvabf(e)"OWS:
by induction: -
_ 1 — . .
pi = ——exp(=f-|fi-1) - fi-2)") (A7)
;. 1 , —i+1
s = him o 1<i<N -1 (12) po= P e (<A1 - 1) - FOI) (18)
p; = 1-pf—p; (19)



Here f(-) denotes an arbitrary fitness function on the abstratheorem 5 For fi(:), gap = 0 and 8 = oo the expected first

states, i.e.,f(-) can be represented as a compositfdhz|;). passage time; fromz = (0,...,0) to the unique optimum

|z|* is an abbreviation fomax (z, 0). Plugging these transition z* = (1,... ,1) is given by

probabilities into formula (15) for the equilibrium distrilhor

and the result into formula (14) yield n=n Z 1 (24)
Jj=1 J

Theorem 3 Stochastic local search acting iB™ with 1-

hamming neighborhoods, uniform sampling, inverse temperroof: The conditiongap = 0 implies thatf; (k) — fi(j) =
ture 8, and a fitness functioyi(|z|,) has the following expected . — j for all j, k. Thus, equation (20) instantiates in a first step
first passage times from a string with |z|; = i to the string to:

z*=(1,...,1):

n 1 7 n .
B e LA 11 P Sy 2 (i) rerts )

= ()

j <k21> exp (8- (f(k) — f(5))) N ; (’;11) [(] ﬁ 1> +

k=1

In the derivation of formula (20) we used the identity k=1
|z|T — | — z|T = = to simplify the second exponential expres: ..
sion. This general formula will be applied to special cases. Now we have for all:

j—1
n
lim exp(—=0-(j—k))=0
Theorem 4 For g = 0 the expected first passage timefrom B—roo ; (k - 1) p(=8-0 2
x = (0,...,0) to the unique optimuma* = (1,...,1) is given
by =~ 2. and therefore
Proqf: This is the case of a random wa_1|k. The passage times n (jjl) noitly
are independent from the fithess function. Applying formula Ti = Z (n—l) =n Z j
(20) yields: j=i \j—1 =1
~ nln(n—i+1)
n 1 7j—1 n
TZ:ZWZQ) 1<i<n  (21) Finallyfori =1 we get:
j=i \j—1/ k=0
"1
From this formula we can get tight boundsan T = ”Z; ~ nlnn
j=1
4
2" 1< 1 <(2"-1)(14 ) n>1 (22) -
n

These bounds determine the asymptotic growth ofrhe lower The above theorems are valid for neighborhood sizel. The

bound results from the last addend in (21), i.e., for= n, next conjecture deals with arbitrary neighborhood sizérhe
and the upper bound can be derived by reordering the addegggroximate analysis is valid fof = co andgap = 0.

in (21) and using the inequality

Conjecture: For f,(-), gap = 0, 8 = oo and neighborhood
sizes the expected first passage timeto move from the initial
pointz = (0, ... ,0) to the unique optimune* = (1,...,1)is
approximately given by

1 4(n — 3)
G (=)

(23)
|

For a random walk the expected first passage time to the global n n) ' n—s\ " 25\ '
; Ml . TR + -+ +1
optimum growsexponentiallyn n. Next we consider stochastic S S S S

hill climbing. (25)

We assume that is an integer multiple of.



We derive the conjecture by the following line of thought: First n | g | Bopt T Tgap
considers = 1. We use the fact that the expected time till the 81| 0.8 208.8 71.2
occurrence of an event with probabilityin an independent se- 3| 0.0 312.0 170.6
quence of trials is};. Starting fromx = (0, ... ,0), the prob- 16|1| 1.8 1925.7 774.3
ability is 1 to get one bit correct. If one bit is correct, then the 3| 0.2| 61913.1] 49755
probability is1 — 1/n to get a second bit correct, etc. Therefore 241 1| 23 6824.8 2872.5
we obtain: 3| 0.9 1.95E6| 205697.4
32| 1| 2.6| 16575.0f 6893.4

n  n n 3| 14| 195E7| 291E6

n=- + — +- 1 64| 1| 3.3| 137909.3|] 55526.6

3| 22 3.68E9| 5.13ES8
This is an intuitive derivation of Theorem 5. We next investigate 96| 1| 3.8| 471361.5| 205983.0
s = 2. We assume that only transitions from 0 to 2 to 4, etc., 3| 26| 7.12E10| 8.63E9
are made. Here the transition probability from state O to state 128 1| 41 1.12E6| 494307.6
2is 1, from state 2 to state 4 i€",%)/(%). There is only one 3| 29| 5.67E11l| 6.71E10

transition fromn — 2 bits ton bits. The probability is given by

(2)~". Summing the inverse from these terms gives the conjec-
ture. Similar approximations we do for arbitrary L]

Table 1
Problem sizen with two gapsg; 744, from equation (26).

5 Results for Jum
p We have not been able to derive a scaling law from these

numbers. In order to obtain a conjecture, we make a simplified
1e+08 — ‘ : : analysis.

le+07 |
Theorem 6 For inverse temperaturg, the expected first pas-

le+06 | . .
e sage timer,,, to cross a gap of sizg can be lower bounded

£ 100000 | by
v oo >4 (69 (26)
Tgap Z Tgap = €Xp (P - g
1000 (g+ 1)
100 Proof: Letus assume thatthe gap is crossed and the optimum is
10 : ‘ : : reached in one sweep. The probabifity,, of this event can be
0 2 4 o 6 8 10 computed by multiplying the one step probabilities. We obtain
eta
Figure 1. Expected first passage tifR& versuss for gap = 0,1, 4. (g+1)!

Pgap = exp (=5 9) =7
We first discuss the case= 16 for neighborhoodsize = 1. In _ o
Figure 1 the expected first passage timéor the string model The resulting passage timeig,, = Pgap- m
is shown for three different gap sizes. The following behavior ) ] ] ] )
can be observed: all curves start with the same valug fero. In TableT 1 this estimate is compared wlth exact F:omputatlons.
This is not surprising, it is just the random walk. There are thrd&'€ estimate shows a comparable scaling behavior.
types of curves. Fogap = 0 the expected first passage time
decreases from = 0till 3 = oo. In this case only improve- 5-1 Performance for larger neighborhoods
ments should be accepted. Fgap = 1 there exists an optimal o analysis leads to a surprising simple conclusion, which we
inverse tempe_ratur@:,pt in (0,_oo). T decreasfes from = Qt||| state as an empirical law:
Bopt and then increases again. lgap = 4 7 increases witls.

Here random walk( = 0) is the best strategy. _ Empirical Law: For Jump in the spaceB™, the expected first
This result can be generally observed. Ifthe gap is large COBlssage time to the global optimum is minimal if the size @f th

pared to the size of the problem, random walk is the best. ffighborhood is equal tgap + 1 and the stochastic algorithm
the gap is small thef# = oo is the best parameter. For gaps 0fjpes not accept worse points.

medium size there exists an optimal paramgtgy.
We now invest.igate the scalir)g for two di.fferent_gap .valuewith s = gap + 1 the algorithm directly jumps from the local
We have approximately determined the optindaivhich gives  mayimum to the global maximum. We have not been able to

the smallest. For the computation we have used equation (Jnaiytically prove this conjecture. Table 2 displays some nu-
The results are displayed in Table 1. merical values fok = gap + 1 andj = 10.



nilg T|9g T19 T Theorem 7 For 5 = 0 the expected first passage timefrom
8|1 476 | 2 96.7| 3 164.6 x = 1tox =nis given by
16| 1 191.0| 2 718.6| 3 2538.5
24| 1| 4300|2| 2379.1| 3| 13026.6 i =n(n—1) (27)
321 764.6| 2 5590.5| 3 | 41633.0
gg 1 23221’ g 11‘;(23(7)22 2 680382;‘: Proof: We apply equation (14). We hayg = p; = 1/2.
1281 12243'1 5 351894.1 3 1.1E7 Therefore we obtai®*(i) = 1/N andZ = N. In S, we have
: . : N = n states. Using equation (14) gives the conjecture. =
Table 2 . .
for s =g+ 1andg = 10. Hence in case of a_random walk the_expe_cted first passage
T 9
time to the global optimum growguadraticallyin n. The next
theorem is proven similarly.
S n T n T n T
1|32 129.9| 64 303.7| 128 696.1 Theorem 8 For f, with gap = 0 and 8 = oo the expected first
2| 32 715.7| 64 2851.5| 128 | 11383.0 passage time from = 1 to the unique optimum* = n is given
3|32| 5587.5| 64| 44169.6| 128 | 351394.0 byr =2(n—1).
4| 32| 41579.5| 64 | 680146.6| 128 1.1E7
o | 32 | 242903.0| 64 8.3E6) 128 2.7E8 These two results have to be interpreted properly. Sgace
Table 3 has onlyn states. This means that optimization by complete

enumeration takes steps. Any kind of biased stochastic lo-
cal search with two neighbors (= 1) needs between? and

2n trials. This is obviously worse than complete enumeration.
Stochastic local search with small neigborhoods is extremely in-

A comparison between Tables 1 and 2 shows that the lar%fgment inSs.

neighborhood = g + 1 outperforms the small neighborhood

s = 1 by order of magnitudes. It is fairly obvious that a large
neighborhood smoothes a rugged landscape. All local minima
which are less thar away from the next local maxima are
jumped over. The algorithm will find the optimum if there is

a transition path with long jumps to one of the global optima.
Along this path the function values do not decrease. Therefore
the numerical results fajap = 0, gap = 1, etc., are identical

as long as the neighborhood size is large enough §ap + 1).

In table 3 we investigate the dependencyradn the neigh-
borhood sizes. Equation (25) can be used as a guidance for an
approximate scaling law. We obtained the following approxima- ‘ ‘ ‘ ‘ ‘ ‘
tions: 0 10 20 30 40 50 60

neighborhood size s
Figure 2. Expected first passage tiR& versus neighborhood size
(n =32, 64, 128, 2569ap =0, 3 = c0).

7 for gap = 0, 8 = .

E(PT)

Empirical Law: For 8 = oo the algorithm scales as ~
¢(s)n®. The numerical fits are as follows:

g nln n2 s=1 In figure 2 the expected first passage timds shown for var-

T 0.75n7 s =2 ious neighborhood sizes. For each problem sizbere exists

T 0.16n° s=3 an optimal neighborhood size. Far= 256 the optimal neigh-

. 0.04n* s=4 borhood size is 22 with an expected passage time= 85.73.

- 0.007n° s =5 This is a substantial reduction compared to neighborhood size

s = 1. Fors = 1 we haver; = 510. Whereas foiB™ the opti-
The scaling law shows that the expected first passage timesniral neighborhood size is= 1 for 5 = oo, we have an optimal
crease polynomial im. The coefficient(s) decreases with in- neighborhood size,,; > 1 for S,. These results confirm our
creasings, because we need less steps to reach the optimumhypothesis: the size of the neighborhood is extremely important
We now analyse stochastic local search in one dimension. for stochastic local search.

6 Markov Chain Analysis in S, 7 Temperature Schedules

We start the discussion with two Theorems. Most of the suggested annealing schedules have been from the

apriori type. They are computed before the run starts and not



adjusted to the actual behavior of the system. Examples are The functionJump is a worst case for any monotonic apriori
schedule s has to be very small nearby the optimum. But any

Bt) = aexp(bt) monotonic schedule has the largest valuesifat the end of the
Bt) = a(t+b) search. This makes it very unlikely that the local search crosses
Bt) = aln(t+0b) the valley.

The third schedule is used in Theorem 1. All schedules incregge®\umerical results from simulations

# monotonically. Such a strategy is obviously bad for functions

where a valley has to be crossed after a large number of trialS.he function/ump is very artificial. We now discuss stochastic
It is very difficult to theoretically analyze for all possible local search for functions with many local optima.

schedules for an arbitrary function. We first analyze the artificial

function Jump, because for this function an optimal schedule h 1,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,

can be computed. This schedule is not of the apriori type. The 4,5,6,5,4,7
schedule depends on the state of the Markov process. fo = 1,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,
4,5,6,5,4,5,6,7
Theorem 9 For Jump(n,gap,|x|1) with neighborhOOd size f3 = 172,]-70,272,372,372,37474,2,3747574,3,
s = 1, the optimal state dependent schedule is 4,6,6,5,4,7,6,8
B(t) = o0 i<n—gap—1 The optimal state dependent schedulefioand f> can easily
Bli) = 0 n—gap—1<i<n-—1 be derived. It is given by(t) = oo if one has to go uphill, or if

the search is at the bottom of a valley. It is givendfy) = 0 if

the local search is at a local optimum, or has to go downhill.
The optimal schedule fofs is difficult to determine. Let us

Proof: Fori < n — gap — 1 the probability to get to state+ 1  consider statér|; = 24. Its fitness value is 7. The fitness values

is maximized for3(i) = co. At statei = n — gap — 1 we have of the neighboring states are 4 and 6. In order to go with higher

a local optimum. The fitness values for the neighboring stateobability to the state with fitness value 6, we should use some

¢ — 1 and: + 1 are equal. Therefore the acceptance probabilisalues > 0 instead of3 = 0. In sched.2 we have sef(24) = 2

for both states is the same. In order to leave the stagesoon instead of 0.

as possibleg should be zero. At state= n — gap we have to

Bi) = o0 i=n-—1

go down further. Any3 > 0 would prefer to go back. Therefore func | meth. T std
B =0 is optimal. - f sched. 14400 14400
fi| N=4| 17700| 15400
This state dependent schedule is obviously better than any f2 | sched. 1300 1240
apriori schedule. The optimal state dependent schedule is not f2| N=5| 79278 80300
monotonic! f3 | sched.1 | 279600| 2600000
In table 4 the first passage timeis shown for the optimal f3 | sched.2 | 46341 40000
schedule. fa| N=4| 20690| 18000
ni|g T|g T Table 5
8|1 114 | 3 265 7 for different schedules and neighborhoods.
16| 1 771| 3 7440
24 |1 2478 | 3| 58152
32| 1 5745| 3 | 251290 . . .
64 | 1| 44644| 3| 8.44E6 Table 5 displays the results of simulations. The entrance
96 | 1 | 149438| 3 6.53E7 sched. means that one of the above described state dependent
128 | 1 | 352887| 3 2.78E8 annealing schedules have been used. denotes the standard
' deviation.
Table 4 For functionf; local search with optimal neighborhood per-
7 for optimal schedule. forms as good as local search with optimal schedule. For func-

tion f» local search with optimal schedule performs far better
than optimal neighborhood search. For functjgrthe optimal
neighborhood search performs better than the search with sched-
Comparing the results of table 4 with tables 1 and 2, we selessched.1 andsched.2. Note the large difference in the per-
that the optimal schedule reducesubstantially compared to formance ofsched.1 andsched.2. The interpretation of these
any fixed3. But for this function local search with optimalresults is difficult. Small changes in the fitness function (ee
neighborhood performs still better. and f3) may cause a huge difference in the search performance.
We have not been able to find apriori temperature schedule For all three functions the optimal state dependent schedule is
which finds the optimum in less thar)” trials forn > 24. not monotonic. It mainly switches betwegn= co andg = 0.



We have not been able to solve the optimization problem by atign, than we have @robabilistic neighborhood.The neigh-
apriori schedule in less thai®” steps. This observation showsborhood is dynamic. A new configuration from the neighbor-
thatany constant or monotonic increasing schedule is far aw#od is not chosen uniformly distributed, but by a problem spe-

from an optimal schedule.

cific probability distribution. This probability distributiogen-

erates more often points nearby the average, and more seldom

9 The Problem of Simulated Annealing

far away from the average. This is done in our FDA algorithm

[MM99, MMO99].
Our research indicates the weak point of simulated annealingl'he results of this paper confirm what has already been found
for fast optimization. SA does not try to develop a model of thempirically: the neighborhood is much more important than
function to be optimized. It just performs a biased random walthe annealing schedule [Fox95]. If the neighborhood is cho-
The random walk does not have any preferred direction. Then properly, then there is no need to introduce a complicated
bias is given by an external parameter, the temperature. Thangealing schedule. The question raised in [HS89]: To cool or
is no feed back between the structure of the landscape andnhbeto cool has the answer: Not to cool.

temperature.

All landscapes considered have a certain structure. TB¢inography

heights of the hills are increasing if the number of bits on in-
creases. Our population algorithm FDA detects and exploits tifs<vL97]
information. By generating many points in a certain area, it is
possible to select the better ones. The better ones do have on the
average more bits on than the whole of the population. In the
next step we generate new points in the vicinity of the select
points. This means we are moving into the right direction. A
functions considered have been easily solved by our simplest
population algorithm UMDA [MMOQO]. [FHW79]
Simulated annealing uses purely local information. It even is
memory less. It does blind moves, the acceptance of the mo
based only on the temperature. This might be a good technitgfe
to approximate important distributions in physics. It is obvi-
ously not a good technique for fast optimization. [Haj88]

a84]

95]

10 Summary and Discussion [HS89]

Much of the folklore of simulated annealing is based on argu-
ments and techniques derived from statistical physics. We hdk&60]
tried to mathematically analyze tractable cases. The results all
point into one direction: variation of the temperature has nﬁéTV83]
a large influence on the computational efficiency. Much more
critical is the size of the neighborhood.

We have shown that in the one dimensional sp&cany lo-
cal search with a small neighborhood performs even worse tHMH97]
enumeration. In the spacg®y = B™ only a state dependent
optimal schedule performs as good as local search with large
neighborhoods. We have shown for the spBéethatany apri- MM99]
ori annealing schedulperforms much worse than both of thé
mentioned methods.

To make the analysis simple we studied local search algo-
rithms where the neighborhood is large enough so that there
exist an uphill path to the optimum. Of course one can arg(MMO99]
that the size of a good neighborhood is not known. But the size
can be determined adaptively, starting with neighborhood size 1.

The neighborhood size is increased if there are too many trials
which are unsuccessful. This technique has just been discﬁ\‘ﬂMOO]
ered in operations research. Its namedsable neighborhood
search[MH97].

Another method to introduce a variable neighborhood is to
use a population of search points instead of a single point. If
the new search points are generated by a probability distribu-
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