Making Solomonoff Induction Effective

You Can Learn What You Can Bound

Jörg Zimmermann and Armin B. Cremers

Institute of Computer Science University of Bonn, Germany

Jörg Zimmermann and Armin B. Cremers: Making Solomonoff Induction Effective

The General Prediction Problem

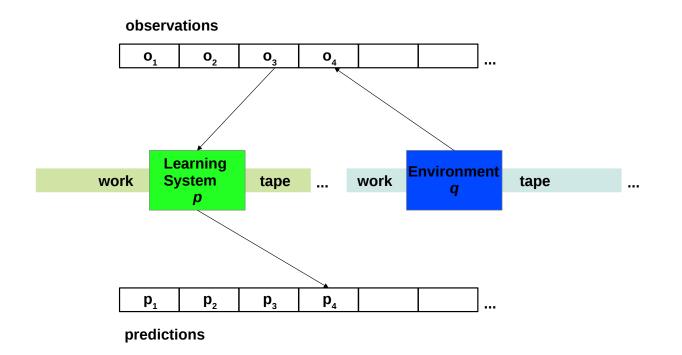
Given a finite sequence of bits, e.g.:

0010010000111110110101010001000100101

Question: What is the next bit?

Asynchronous Learning Framework (ALF)

A learning system observing and predicting an environment:



Solomonoff Induction

- Bayesian learning in program space.
- Prior $\sim 2^{-|p|}$, |p| = length of program p in bits.
- But posterior distribution on program space is not computable! (the programs stopping to produce output cause trouble).

Key Points of our Approach

- Learning driven by a combined search in program and proof space.
- Reduction of learnability to provability and set existence axioms.
 Axiom systems of reverse mathematics and large cardinal axioms can be used to show that proof-theoretic strength translates into learning strength.
- Introduction of a new learning framework, the *Synchronous Learning Framework (SLF)*, which couples the time scales of the learning system and the environment.

Probabilistic Learning Systems

$\Lambda: \{0,1\}^* \times \{0,1\} \to [0,1]_{\mathbf{Q}}$

with $\Lambda(x,0) + \Lambda(x,1) = 1$ for all $x \in \{0,1\}^*$.

 Λ is an *effective* probabilistic learning system if Λ is a total recursive function.

Learnability

Learning as learning in the limit:

Eventually the learning system will become near certain about the true continuation of the observed bit sequence.

Definition: An infinite bit sequence s is learnable in the limit by the probabilistic learning system Λ , if for all $\epsilon > 0$ there is an n_0 so that for all $n \ge n_0$ and all $k \ge 1$:

$$\Lambda^{(k)}(s_{1:n}, s_{n+1:n+k}) > 1 - \epsilon.$$

 $\Lambda^{(k)}$: extending prediction horizon to k bits by feeding Λ with its own predictions.

Σ -driven Learning Systems

• Turning an Axiom System Σ into a Learning System Λ :

$\Sigma \longrightarrow \Lambda(\Sigma)$

- A Σ-driven learning system is a learning system using the background theory Σ in order to derive totality proofs for recursive functions.
- These provably recursive functions are used to build a guard function, which schedules the learning process and guarantees its effectiveness.

Generator Time Function

The generator time function of a program p is defined as:

$G_p: \mathbf{N} \to \mathbf{N} \cup \{\infty\}$

 $G_p(n) = \#$ transitions executed by p to generate the first n bits.

Observation Equivalence

 s_p = the bit sequence generated by program p.

Then the *observation class* [s] of a bit sequence s is defined as:

 $p \in [s]$ iff $s = s_p$.

Jörg Zimmermann and Armin B. Cremers: Making Solomonoff Induction Effective

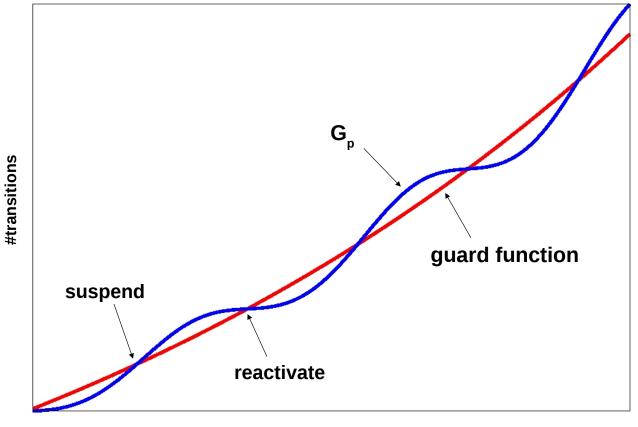
Generator-Predictor Theorem

The infinite bit sequence s is learnable by $\Lambda(\Sigma)$, if:

 $\exists p \in [s], f \text{ recursive function}: \Sigma \vdash \phi_{tot}(f) \text{ and } f \geq_d G_p.$

 $\phi_{tot}(f) = f$ is a total recursive function. $f \ge_d g = f$ dominates g (i.e., $\exists n_0 \ \forall n \ge n_0 : f(n) \ge g(n)$).

The hard case: infinite number of switches



#observed bits

Σ -driven probabilistic learning system

Idea: retroactive change of prior:

 $\sim 2^{-(|p|+switch(p,n))}$

(Solomonoff prior $\sim 2^{-|p|}$)

⇒ Dynamic Bayesian Inference, i.e., construction of model space and prior probabilities is interleaved with the inference process.

Conclusions 1

- The generator-predictor theorem establishes a natural perspective on the effective core of Solomonoff induction.
- This shifts the questions related to learnability to questions related to provability, and therefore into the realm of the foundations of mathematics.

Synchronous Learning Framework (SLF)

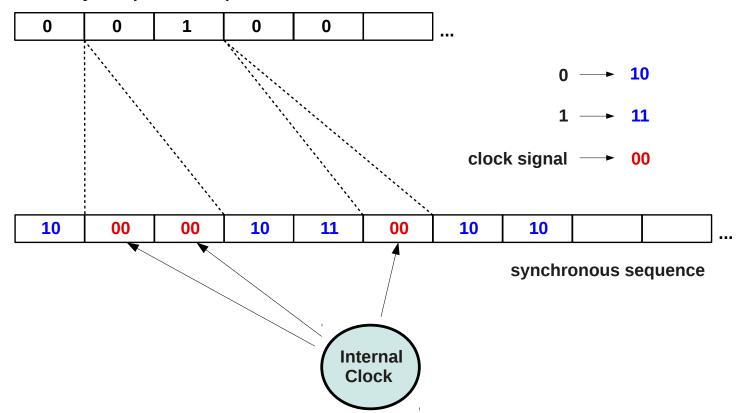
Observation: in real world learning situations, the generator and the learner are not suspended while the other one is busy.

$$s \text{ is synchronous} :\iff \limsup_{n \to \infty} \frac{G_p(n)}{n} < \infty \text{ for at least one } p \in [s].$$

⇒ the time scales of the learning system and the environment are coupled.

Clockification

arbitrary computable sequence



Synchronous Learning Framework

- Clockification transforms every computable bit sequence into a synchronous one.
- All synchronous bit sequences are learnable by $\Lambda(\Sigma)$, if $\Sigma \vdash "n^2$ is a total recursive function".
- Thus in the SLF all effectively generated bit sequences can be effectively learned.

Final Conclusion

If the learning system is enhanced by an internal clock:

Effective universal induction is possible!

Hence future research can focus on efficient universal induction.