Making Solomonoff Induction Effective or
You Can Learn What You Can Bound

Jorg Zimmermann and Armin B. Cremers

Institute of Computer Science,
University of Bonn, Germany
{jz, abc}@iai.uni-bonn.de

Abstract. The notion of effective learnability is analyzed by relating it
to the proof-theoretic strength of an axiom system which is used to derive
totality proofs for recursive functions. The main result, the generator-
predictor theorem, states that an infinite sequence of bits is learnable
if the axiom system proves the totality of a recursive function which
dominates the time function of the bit sequence generating process.
This result establishes a tight connection between learnability and prov-
ability, thus reducing the question of what can be effectively learned to
the foundational questions of mathematics with regard to set existence
axioms. Results of reverse mathematics are used to illustrate the impli-
cations of the generator-predictor theorem by connecting a hierarchy of
axiom systems with increasing logical strength to fast growing functions.
Our results are discussed in the context of the probabilistic universal
induction framework pioneered by R. J. Solomonoff, showing how the
integration of a proof system into the learning process leads to naturally
defined effective instances of Solomonoff induction. Finally, we analyze
the problem of effective learning in a framework where the time scales
of the generator and the predictor are coupled, leading to a surprising
conclusion.

1 Introduction

An effective learning system is a system which can be fully specified by a program
on a universal Turing machine. In its most general form, this program transforms
a stream of percepts generated by an environment (later called the generator)
into a stream of actions possibly changing this environment. Via this senso-
motoric loop the system is embedded into its environment, about which a priori
nothing is known [7]. A more specific notion of learning is defined as the process
which translates the stream of percepts into predictions for future percepts.
These predictions can then be used for choosing actions. The analysis of the
“design space” for effective learning systems leads to three major questions:

1. How should a learning system represent and process uncertainty, or, what is
the proper inductive logic?
2. What set of possible models of the environment should the system consider?

3. How to relate the explanatory power of a model to its complexity?

In the long run, the learning system should be able to detect as many regular-
ities in its percept stream as possible, while dealing sensibly with the inherent
uncertainty of predictions based on a finite amount of data. The first question
regarding the representation and processing of uncertainty is in itself a current
area of research, where a plethora of different approaches are discussed [5]. An
attempt to find a unifying perspective on these approaches has been made in [15].
However, this question is not the focus of this contribution, so we will discuss
only a probabilistic learning framework, which is essentially a dynamic extension
of Bayesian inference. Here we focus on the second and third question.

The definition of proof-driven learning systems, combining search in proof
and program space, was inspired by an algorithm solving all well-defined prob-
lems as fast as possible (save for a factor of 5 and additive terms) introduced by
M. Hutter in [6]. We apply this idea in the context of learning in the limit and
discuss in more detail the dependence of concepts like well-definedness of pro-
grams or effective learnability on the proof-theoretic strength of the employed
background theory, thus establishing an explicit link between effective learnabil-
ity and the foundational mathematical questions treated in proof theory and
ordinal analysis [10]. Additionally, our results emphasize the fact that provabil-
ity is not an absolute concept. The theoretical limits of effective learnability and
computable approximations to Solomonoff induction are intensively discussed in
various publications investigating different aspects of this topic, see, for example,
[8] and the references therein, but to our knowledge none has made the connec-
tion between proof-theoretic strength, time complexity and effective learnability
as explicit as it is stated in our main result, the generator-predictor theorem.
The first learning in the limit framework, wich does not consider the uncertainty
of predictions, was introduced by E. M. Gold [3]. A discussion of our results in
the context of this framework can be found in [16].

2 The Generator Space

A clarification of the concept of learnability has to consider the following ques-
tion: What is the set of possible generators for observed events? To answer this
question, we will explore the notion of “all possible generators” from a mathe-
matical and computational point of view, and discuss the question of effective
learnability in the context of such generic model spaces. The last sentence uses
intentionally the plural form of model space, because we will see that the notion
of “all possible models” cannot be defined in an absolute sense, but only with re-
gard to a reference proof system. This dependence will lead to the establishment
of a relationship between the time complexity of the percept-generating environ-
ment and the logical complexity of an effective learning system, thus shedding
new light on the undecidability of a general approach to induction developed by
R. J. Solomonoft in the 1960s [12,13,9].

2.1 Algorithmic Ontology: Programs as Generators

Ontology is a part of philosophy which tries to define what exists, or, more
specifically, what possibly could exist. In the realm of mathematics, this question
leads to the set existence problem, which is (partially) answered by various set
theories, most commonly by using the axiom system ZFC, Zermelo-Fraenkel set
theory with the axiom of choice. But in the realm of computer science, existence
has to be effective existence, i.e. the domain of interest and its operations must
have effective representations.

For this reason the objects we consider are programs executed by a fixed
universal Turing machine U having a one-way read-only input tape, some work
tapes, and a one-way write-only output tape (such Turing machines are called
monotone), which will be the reference machine for all what follows. The choice
of the specific universal Turing machine has only a constant factor as effect on
the space complexity of a program and at most a logarithmic factor as effect on
the time complexity [1]. These effects are small enough to be neglected in the
following foundational considerations, but in the context of alternative models of
computation, like cellular automata on infinite grids, the choice of the reference
machine may become an important issue. The program strings are chosen to be
prefix-free, i.e. no program string is the prefix of another program string. This is
advantageous from a coding point of view (enabling, for example, the application
of Kraft’s inequality >_ 2-length(p) < 1), and does not restrict universality [9].

A program p (represented as finite binary string) is a generator of a possible
world, if it outputs an infinite stream of bits when executed by U. Unfortunately,
it is not decidable whether a given program p has this well-definedness property.
This is the reason why the general approach to induction introduced by R. J.
Solomonoff is incomputable: the inference process uses the whole set of programs
(program space) as possible generators, even the programs which are not well-
defined in the above sense.

This results in the following dilemma: either one restricts the model space
to a decidable set of well-defined programs, which leads to an effective inference
process but ignores possibly meaningful programs, or one keeps all well-defined
programs, but at the price of necessarily keeping ill-defined programs as well,
risking the incomputability of the inference process. However, in the following
we propose an approach which tries to mitigate this dilemma by reducing the
question of learnability to the question of provability.

3 Learning Systems

Here we introduce the notion of a probabilistic learning system, which takes
a finite string of observed bits (the percept string) as input and produces a
probabilistic prediction for the next bit as output:

Definition 1. A probabilistic learning system is a function

A:{0,1}" x {0,1} — [0,1]q, with A(z,0)+ A(z,1) =1 for all z € {0,1}".

A is an effective probabilistic learning system if A is a total recursive function.
We use rational numbers as probability values, because real numbers cannot
be used directly in a context of computability questions, but have to be dealt
with by effective approximations [14]. This would increase the complexity of our
definitions significantly, and is not necessary for a first understanding of the fun-
damental relationship between learnability and provability. Also we treat only
deterministic generators leading to one definite observable bit sequence. A gen-
eralization of our results to real valued probabilities and probabilistic generators
should be possible, but is open to future research.

Next we extend the prediction horizon of A by feeding it with its own predic-
tions. This leads to a learning system A®*) which makes probabilistic predictions
for the next k bits (zy is the concatenation of string = and y):

AD Z 4,

AR (z,y1) = AR (2, y) - Azy, 1), = € {0,1}",y € {0,1}",

A(k+1)($v yO) =AW (l‘, y) : A('Ty7 O)

Finally, we define the learnability of an infinite bit sequence s (s;.; is the subse-
quence of s starting with bit ¢ and ending with bit j):

Definition 2. An infinite bit sequence s is learnable in the limit by the proba-
bilistic learning system A, if for all ¢ > 0 there is an ng so that for all n > ny
and all k > 1:

A(k’) (sl:na Sn+1:n+k) > 1—e.

4 3 -driven Learning Systems

We now introduce the learning systems we will use to investigate the notion of
effective learnability. But first we need the following definitions specifying the
nature of background theories available to these learning systems.

Definition 3. A logic frame is a 5-tuple X' = (S, F, |=,, @), where elements of
S are called the structures of X, elements of F' are called the sentences of X, the
relation |= C S x F is called the satisfaction relation of X, - : 2 — 2F s the
deduction system of X, and @ C F' is the core axiom system of X.

A deduction system is sound if for all ¥ C F' it holds: if & + ¢, then for all
M e S:if M =¥, then M |= 9. Next we define admissibility for logic frames:

Definition 4. Let X = (S, F,=,F,®) be a logic frame. X is admissible if b is
sound, @ is enumerable, & effectively maps enumerable sets of axioms to enu-
merable sets of logical consequences, and for all recursive functions f there is a
sentence ¢ior(f) € F with the following property: if ® & drot(f), then f is a total
recursive function.

Note that this definition only fixes the meaning of ¢:o(f) when it is derivable
from @. A pathological definition like ¢1o1(f) = FALSE for all f is consistent

with the above definition of a logic frame, but would imply that such a logic
frame could not prove the totality of any recursive function f.

Let ¢4, ..., ¢, be the first n sentences enumerated by the deduction system
of an admissible logic frame X', then the set Tot, (X) is defined as follows:

f S TOtn(Z) iff ¢t0t(f) S {¢17 ey ¢n}

So Tot, (%) contains the recursive functions which admit a totality proof within
the first n sentences enumerated by the deduction system of Y.

Now let g,(m) = maz({f(m)|f € Tot,(X)}) and g(n) = gn(n). g is called
the guard function wrt. Y. The maximum over an empty set is defined as 0.
Note that the maximum is taken over a finite set of total recursive functions, so
the guard function is a total recursive function, too. The guard function g will
play a central role as a scheduler ensuring the effectiveness of learning systems.

Let X' be an admissible logic frame, then the X-driven probabilistic learning
system A(X) is defined as follows: A(X) uses a dynamic model space and dy-
namic prior probabilities and considers at inference step n only the part of the
program space given by the programs with length at most n. Because n grows
unboundedly, eventually every program will be part of the model space, but at
every instant of time the model space is finite. This assumption implies that
the posterior distributions and the probabilistic predictions can be computed
exactly and all involved probabilities are rational numbers. A(X) also manages
three labels for programs in addition to their current probabilities, in contrast to
classical Baysian inference: “candidate”, “suspended”, and “discarded”. A pro-
gram which is added to the model space initially gets the label “candidate”, all
other programs keep their label from the previous inference step. After the nth
bit has been observed, A(X) executes the following steps:

Input: the nth observed bit.
Output: a probabilistic prediction for the next bit.

1. Derive ¢,, using the deduction system of X

2. Compute g(n).

3. Initialize p, = 0. This variable accumulates preliminary posterior probability
mass and is needed to normalize the posterior distribution.

4. Start the enumeration of all programs p with length(p) < n.

5. If a program p is labeled “discarded”, it has already probability 0 and nothing
has to be done.

6. If a program p is labeled “suspended” or “candidate”, evaluate program p
till it outputs n bits or its step function reaches g(n).

7. If p has generated a bit and it is the observed one, then label p as “candi-
date”. Assign p a preliminary posterior probability of 2~ (tength(p)tswitch(p,n))
where switch(p,n) counts the number of switches p has experienced from
“suspended” status back to “candidate” status up to now. A higher number
of switches is translated retroactively into a lower prior probability. Add the
preliminary posterior probability to .

8. If the generated bit is not the observed one, label p as “discarded” and set
its posterior probability to O.

9. If p has reached the time limit specified by the guard function g, then label
p as “suspended” and set its posterior probability to 0.

10. Continue the enumeration of programs.

11. If the enumeration of all programs p with length(p) < n is completed and no
program has the label “candidate”, return (%,%) as probabilistic prediction
for the next bit. Exit this inference step.

12. Rescale the preliminary posterior probabilities of all models labeled “can-
didate” by 1/p., resulting in a normalized posterior distribution on the
currently considered model space. Use the guarded versions p | g of the
programs p labeled “candidate” for computing the probabilistic prediction
for the next bit. (p [g, p guarded by g, is the time limited version of p: if
the step function (the function which just counts the transitions made by
p) of p(m) exceeds g(m), then the computation of p is terminated and 0 is
returned, else p(m) is returned).

This finishes our definition of X-driven probabilistic learning systems. Next we
will formulate and prove a theorem characterizing their learning capabilities.

5 Generator-Predictor Theorem

If the generator functions (see below) of all programs p generating a bit sequence
s grow so fast that they are not dominated by a provably total recursive function,
then it is indistinguishable, even in the limit, from a non-effective bit sequence.
So the quest for making Solomonoff induction effective can be reduced to the
concept of provably total recursive functions. But which functions are provably
total recursive and which are not? The answer is: it depends. It depends on
the background theory or logic frame which is accepted for the construction of
totality proofs. At this point we have reduced the problem of universal induction
to a logical parameter, the logic frame Y to which the learning system can
refer. The next step is to relate the proof strength of a logic frame X to the
time complexity of a program p which generates the bit stream observed by our
learning system. This will yield a natural characterization of the learnable bit
sequences relative to X.

Before we can state this relationship as a theorem, we need the notion of the
generator time function, generator function for short, of a program p:

Definition 5. The generator time function G](DU) :N — NU{oo} of a program
p wrt. the universal reference machine U assigns every n € N the number of
transitions needed to generate the first n bits by the reference machine U exe-
cuting p. If ng is the smallest number for which p does not generate a new bit,
then G,(,U)(n) = oo for alln > ny.

In the following we will drop the superscript (U) because we are working only
with one reference machine.

In general there are several programs generating the same observable bit
sequence. So one can not hope to learn exactly the program p which generates
the observed bit sequence, but only a program p’ which is observation equivalent.
The equivalence class of programs corresponding to an infinite bit sequence s we
will denote by [s]. Now we have introduced all the notions and concepts we need
in order to state our main result:

Generator-Predictor Theorem: Let Y be an admissible logic frame and s an
infinite bit sequence. s is learnable by the effective probabilistic learning system
A(X), if X proves the totality of a recursive dominator of a generator function
G, for at least one program p € [s].

Proof: Let Lx(s) = {plp € [s] and X proves the totality of a recursive domina-
tor of the generator function of p}. So Lx(s) contains the programs which can
be eventually used by A(X) as perfect predictors. If Lx(s) is empty, the theo-
rem makes no statement about the learnability of s, so lets assume that Lx(s)
contains at least one element. We will show that the sum of the posterior prob-
abilities of the programs in Ly (s) will converge to 1 as the number of observed
bits increases. This will be conducted in two steps. Let a(p, n) be the preliminary
posterior probability (i.e., the posterior probability assigned to p before normal-
ization) of program p in the nth inference step (programs not contained in the
nth model space are considered as having a preliminary posterior probability of
0), a(n) be the sum of the preliminary posterior probabilities of all programs
in Lx(s) and @(n) be the sum of the preliminary posterior probabilities of all
programs not in Ly (s). Note that a(n)+a(n) # 1, because preliminary and not
final posterior probabilities are considered. First we will show the existence of a
number n; so that a(n) > ¢ for some constant ¢ > 0 and for all n > ny. And
second, we will see that &(n) converges to 0 as the number of inference steps n
goes to infinity. This implies that the normalized value of a(n) has to go to 1 as
n goes to infinity:

= g e
an)+aln) 14 % n—oo

So both steps together will establish the generator-predictor theorem.

If p € Lx(s), then there is a number ng so that the guard function g majorizes
G) for all n > ng. Let ny = max(nog,length(p)). Then p is part of the model
space for all n > nq and it is not discarded and not suspended. Its preliminary
posterior probability is 2~ (tength(p)+switch(p:n1)) This number does not change
anymore for n > n; (no new switches), thus ¢ = 2~ (length(p)tswitch(pni)) 5 js
a lower bound for a(n) for all n > ny. This completes the first step.

Kraft’s inequality for prefix codes implies Zp&L;(s) 2~ length(p) < 1. Thus for

all € > 0 there is a ko With 3= o7 (o) rength(p)>k 2~ length(p) < ¢ for all k > ko,

because for a convergent sum the partial sums Zngg(s) length(p)<k 2~ length(p)

converge to the limit. Now choose ns so that EngE(S))lmgth(p»n 2~ length(p)

€/2 for all n > na, and ng so that - o1 o) ength(p)<n, @(P,n) < €/2 for all

n > ng. ng exists, because for a fixed ng there are only finitely many summands
a(p,n) contributing to the sum, each dropping to 0 (discarded or suspended
forever) or converging to 0 (number of switches increases unboundedly) as n
goes to infinity. Then for all n > n3 we have:

an)= Y aln= Y apn) + Y apn)

p&Lx(s) PEL 5 (s) PZL 5 (s)
length(p)<ns length(p)>na2
—length(p) _
< alp,n) + 2 < €/2+¢€/2 = ¢
PEL 5 (s) PEL5;(s)
length(p)<na length(p)>na

This finishes the second step and thus the proof of the generator-predictor the-
orem.
O

For example, if ¥py = (FOL, PA) (First order logic Peano Arithmetic), then
every program with a generator function which is dominated by a provably
total recursive function wrt. PA can be learned by A(Xp4). As the Ackermann-
function is provably total in PA, this is already a pretty large set, and PA
allows totality proofs of functions which grow much faster than the Ackermann-
function.

The Generator-Predictor theorem states that for learning a bit sequence s it
is enough to prove the totality of a recursive dominator of the generator function
of a program p € [s], it is not necessary to prove the totality of p itself. However,
one can show that whenever there is a p € [s] so that the logic frame X can
prove the totality of a recursive dominator of G,, then there is a ¢ € [s| for
which X' can prove totality, provided the logic frame satisfies some weak closure
conditions [16].

6 Learnability and Reverse Mathematics

Reverse mathematics is a program in mathematical logic that seeks to deter-
mine which set existence axioms are required to prove theorems of mathematics
in order to classify these theorems according to the strength of existence axioms
necessary to derive them. The program was founded in the 1970s by H. Friedman
[2]. Maybe the most remarkable fact of reverse mathematics is that many theo-
rems of classical mathematics fall into five large equivalence classes, consisting of
provably equivalent theorems. This leads to five standard axiom systems, which
are linearly ordered according to their proof-theoretic strength. S. G. Simpson
has named them the “Big Five” [11], starting with a system called RC Ay (Re-
cursive Comprehension Axiom), followed by WKLy (Weak Konig’s Lemma),
ACAp (Arithmetical Comprehension Axiom), AT Ry (Arithmetical Transfinite
Recursion), and I} — C' Ay (I1}-Comprehension Axiom).

One can show that the functions which admit totality proofs by RC Ay are ex-
actly the primitive recursive functions. This implies that a bit stream s ackermann

which has a generating program with a generator function growing like the
Ackermann-function — a function known not to be primitive recursive — but no
generating program with a generator function dominated by a primitive recur-
sive function, can not be learned by A(RC Ap). In terms of totality proofs WK L
adds no additional proof-strength to RC'Ag, but the next system, AC Ay, can
prove the totality of the Ackermann-function, so A(AC'Ap) can learn sackermann
and is therefore a stronger learning system than A(RCAp). But there are total
recursive functions which have no totality proof in AC' Ay (which is equivalent to
Peano Arithmetic in this regard), for example the Goodstein-function [4]. This
can be continued even beyond II{ — C Ay, leading to the foundational questions
within mathematics concerning the introduction of ever stronger set existence
axioms. Here it suffices to note that these examples are a good illustration of
the fact that increased proof-theoretic strength translates into stronger learning
systems.

7 Synchronous Learning Frameworks

A closer look on real world incremental learning situations, where both, the
environment and the learning system, are not suspended while the other one is
performing its transitions resp. computations, leads to the following notion of
synchrony of a bit sequence s:

Definition 6. s is synchronous if lim squ"T(") < oo for at least one p € [s].
n—oo

Synchrony entails that the time scales of the learning system and the environ-
ment are coupled, that they cannot ultimately drift apart. As long as one not
assumes a malicious environment, synchrony seems to be a natural property.
Such a setting for learning could be called a synchronous learning framework, in
contrast to the above considered learning frameworks, which could be classified
as asynchronous.

In order to learn in the case of synchrony, it suffices to prove that n? is total,
because n? is a dominator of every generator function satisfying the synchrony
condition. Thus, a much weaker background theory than, e.g. Peano Arithmetic
would suffice for an effective learning system to learn all synchronously generated
bit sequences. In fact, because RC' Ay — the weakest of the five standard axiom
systems considered in reverse mathematics — proves the totality of all primi-
tive recursive functions, A(RCAp) is a perfect learning system in a synchronous
world.

8 Conclusion

We argue that the generator-predictor theorem establishes a natural perspective
on the effective core of Solomonoff induction by shedding new light on the cause
of the incomputability of the non-relativized Solomonoff induction, instead of di-
rectly introducing specific resource constraints in order to achieve computability,

like this is done, for example, in [7] for the AI¢ learning system. This shifts the
questions related to learnability to questions related to provability, and therefore
into the realm of the foundations of mathematics.

The problem of universal induction in the synchronous learning framework,
however, is intrinsically effective, and the focus of future research in a syn-
chronous framework can be on efficiency questions. In fact, the source of incom-
putability in the asynchronous learning framework can be traced back to the fact
that the learning system does not know how much time the generator process has
“invested” in order to produce the next bit. An extension of a bit sequence s by
inserting “clock signals” (coding a clock signal by “00” and output bits by “10”
and “11”) marking the passing of time would transform every sequence s into a
synchronous one, thus eliminating the incomputability of Solomonoff induction.
So the synchronous learning framework seems to be perfectly suited for studying
the problem of universal induction from a computational point of view.

References

1. S. Arora and B. Barak. Complexity Theory: A Modern Approach. Cambridge
University Press, 2009.

2. H. Friedman. Some systems of second order arithmetic and their use. In Proceedings
of the International Congress of Mathematicians (Vancouver, B.C.), volume 1,
pages 235-242. Canad. Math. Congress, Montreal, Que., 1974.

3. E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447-474, 1967.

4. R. Goodstein. On the restricted ordinal theorem. Journal of Symbolic Logic, 9:33—
41, 1944.

5. F. Huber and C. Schmidt-Petri, editors. Degrees of Belief. Springer, 2009.

6. Marcus Hutter. The fastest and shortest algorithm for all well-defined problems.
International Journal of Foundations of Computer Science, 13(3):431-443, 2002.

7. Marcus Hutter. Universal Artificial Intelligence: Sequential Decisions based on
Algorithmic Probability. Springer, 2005.

8. S. Legg. Is there an elegant universal theory of prediction? In Proc. 17th Interna-
tional Conf. on Algorithmic Learning Theory (ALT06), pages 274-287, 2006.

9. Ming Li and Paul M. B. Vitdnyi. An introduction to Kolmogorov complexity and
its applications (3. ed.). Graduate texts in computer science. Springer, 2008.

10. M. Rathjen. The art of ordinal analysis. In Proceedings of the International
Congress of Mathematicians, pages 45-69. Eur. Math. Soc., 2006.

11. S. G. Simpson. Subsystems of Second Order Arithmetic (2. ed.). Cambridge Uni-
versity Press, 2009.

12. R. Solomonoff. A formal theory of inductive inference, part I. Information and
Control, 7(1):1-22, 1964.

13. R. Solomonoff. A formal theory of inductive inference, part II. Information and
Control, 7(2):224-254, 1964.

14. K. Weihrauch. Computable analysis. Springer, 2000.

15. J. Zimmermann and A. B. Cremers. The Quest for Uncertainty. In Cristian S.
Calude, Grzegorz Rozenberg, and Arto Salomaa, editors, Rainbow of Computer
Science, volume 6570 of Lecture Notes in Computer Science. Springer, 2011.

16. J. Zimmermann and A. B. Cremers. Proof-driven learning systems.
http://www.iai.uni-bonn.de/ “jz/pls.pdf, 2012.

10

